Article

Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

National Institute for Medical Research, Amani Centre, P, O, Box 81, Muheza, Tanzania. .
Malaria Journal (Impact Factor: 3.49). 06/2012; 11:188. DOI: 10.1186/1475-2875-11-188
Source: PubMed

ABSTRACT A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania.
The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR.
As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species.
The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area.

0 Followers
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important vectors of both malaria and lymphatic filariasis. Archived (from 2005-2012) and newly collected (from 2014) specimens of the An. funestus group collected indoors using CDC light traps in villages in northeastern Tanzania were analysed. They were identified to sibling species by PCR based on amplification of species-specific nucleotide sequence in the ITS2 region on rDNA genes. The specimens were furthermore examined for infection with Plasmodium falciparum and Wuchereria bancrofti by PCR. The identified sibling species were An. funestus s.s., Anopheles parensis, Anopheles rivulorum, and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005-2007 to those from 2008-2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species composition were minor. No P. falciparum was detected in archived specimens, while 8.3% of the newly collected An. funestus s.s. were positive for this parasite. The overall W. bancrofti infection rate decreased from 14.8% in the 2005-2007 archived specimens to only 0.5% in the newly collected specimens, and with overall 93.3% of infections being in An. funestus s.s. The study indicated that the composition of the An. funestus group had remained rather stable during the study period, with An. funestus s.s. being the most predominant. The study also showed increasing P. falciparum infection and decreasing W. bancrofti infection in An. funestus s.s. in the study period, most likely reflecting infection levels with these parasites in the human population in the area.
    Malaria Journal 12/2015; 14(1):616. DOI:10.1186/s12936-015-0616-4 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods.Methods Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10th generation and compared to founder wild population.ResultsIn contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population.Conclusions Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.
    Malaria Journal 01/2015; 14(1):10. DOI:10.1186/s12936-014-0523-0 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Increases in the coverage of long-lasting insecticidal nets (LLINs) have significantly reduced the abundance of Anopheles gambiae sensu stricto in several African settings, leaving its more zoophagic sibling species Anopheles arabiensis as the primary vector. This study investigated the impact of livestock ownership at the household level on the ecology and malaria infection rate of vectors in an area of Tanzania where An. arabiensis accounts for most malaria transmission.Methods Mosquito vectors were collected resting inside houses, animal sheds and in outdoor resting boxes at households with and without livestock over three years in ten villages of the Kilombero Valley, Tanzania. Additionally, the abundance and sporozoite rate of vectors attempting to bite indoors at these households was assessed as an index of malaria exposure.ResultsThe mean abundance of An. gambiae s.l. biting indoors was similar at houses with and without livestock. In all years but one, the relative proportion of An. arabiensis within the An. gambiae s.l. species complex was higher at households with livestock. Livestock presence had a significant impact on malaria vector feeding and resting behaviour. Anopheles arabiensis were generally found resting in cattle sheds where livestock were present, and inside houses when absent. Correspondingly, the human blood index of An. arabiensis and An. funestus s.l. was significant reduced at households with livestock, whereas that of An. gambiae s.s. was unaffectedWhilst there was some evidence that sporozoite rates within the indoor-biting An. gambiae s.l population was significantly reduced at households with livestock, the significance of this effect varied depending on how background spatial variation was accounted for.Conclusions These results confirm that the presence of cattle at the household level can significantly alter the local species composition, feeding and resting behaviour of malaria vectors. However, the net impact of this livestock-associated variation in mosquito ecology on malaria exposure risk was unclear. Further investigation is required to distinguish whether the apparently lower sporozoite rates observed in An. gambiae s.l. at households with livestock is really a direct effect of cattle presence, or an indirect consequence of reduced risk within areas where livestock keepers choose to live.
    Malaria Journal 01/2015; 14(1):17. DOI:10.1186/s12936-014-0536-8 · 3.49 Impact Factor

Full-text (3 Sources)

Download
17 Downloads
Available from
Jun 1, 2014

Similar Publications