Article

Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites.

Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Genome Research (Impact Factor: 13.85). 06/2012; 22(8):1407-18. DOI: 10.1101/gr.132878.111
Source: PubMed

ABSTRACT DNA methylation is an essential epigenetic mark that is required for normal development. Knockout of the DNA methyltransferase enzymes in the mouse hematopoietic compartment reveals that methylation is critical for hematopoietic differentiation. To better understand the role of DNA methylation in hematopoiesis, we characterized genome-wide DNA methylation in primary mouse hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), and erythroblasts (ERYs). Methyl binding domain protein 2 (MBD) enrichment of DNA followed by massively parallel sequencing (MBD-seq) was used to map genome-wide DNA methylation. Globally, DNA methylation was most abundant in HSCs, with a 40% reduction in CMPs, and a 67% reduction in ERYs. Only 3% of peaks arise during differentiation, demonstrating a genome-wide decline in DNA methylation during erythroid development. Analysis of genomic features revealed that 98% of promoter CpG islands are hypomethylated, while 20%-25% of non-promoter CpG islands are methylated. Proximal promoter sequences of expressed genes are hypomethylated in all cell types, while gene body methylation positively correlates with gene expression in HSCs and CMPs. Elevated genome-wide DNA methylation in HSCs and the positive association between methylation and gene expression demonstrates that DNA methylation is a mark of cellular plasticity in HSCs. Using de novo motif discovery, we identified overrepresented transcription factor consensus binding motifs in methylated sequences. Motifs for several ETS transcription factors, including GABPA and ELF1, are overrepresented in methylated regions. Our genome-wide survey demonstrates that DNA methylation is markedly altered during myeloid differentiation and identifies critical regions of the genome and transcription factor programs that contribute to hematopoiesis.

1 Follower
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract DNA methylation is responsible for regulating gene expression and cellular differentiation and for maintaining genomic stability during normal human development. Furthermore, it plays a significant role in the regulation of hematopoiesis. In order to elucidate the influence of DNA methylation during B-cell development, genome-wide DNA methylation status of pro-B, pre-BI, pre-BII, and naïve-B-cells isolated from human umbilical cord blood was determined using the methylated CpG island recovery assay followed by next generation sequencing. On average, 182 - 200 million sequences were generated for each precursor B-cell subset in 10 biological replicates. An overall decrease in methylation was observed during the transition from pro-B to pre-BI, whereas no differential methylation was observed in the pre-BI to pre-BII transition or in the pre-BII to naïve B-cell transition. Most of the methylated regions were located within intergenic and intronic regions not present in a CpG island context. Putative novel enhancers were identified in these regions that were differentially methylated between pro-B and pre-BI cells. The genome-wide methylation profiles are publically available and may be used to gain a better understanding of the involvement of atypical DNA methylation in the pathogenesis of malignancies associated with precursor B-cells.
    Epigenetics: official journal of the DNA Methylation Society 12/2014; DOI:10.4161/15592294.2014.983379 · 5.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide DNA methylation at a single nucleotide resolution in different primary cells of the mammalian genome helps to determine the characteristics and functions of tissue-specific hypomethylated regions (TS-HMRs). We determined genome-wide cytosine methylation maps at 91X and 36X coverage of newborn female mouse primary dermal fibroblasts and keratinocytes and compared with mRNA-seq gene expression data. These high coverage methylation maps were used to identify HMRs in both cell types. A total of 2.91% of the genome are in keratinocyte HMRs, and 2.15% of the genome are in fibroblast HMRs with 1.75% being common. Half of the TS-HMRs are extensions of common HMRs, and the remaining are unique TS-HMRs. Four levels of CG methylation are observed: 1) total unmethylation for CG dinucleotides in HMRs in CGIs that are active in all tissues; 2) 10% to 40% methylation for TS-HMRs; 3) 60% methylation for TS-HMRs in cells types where they are not in HMRs; and 4) 70% methylation for the nonfunctioning part of the genome. SINE elements are depleted inside the TS-HMRs, while highly enriched in the surrounding regions. Hypomethylation at the last exon shows gene repression, while demethylation toward the gene body positively correlates with gene expression. The overlapping HMRs have a more complex relationship with gene expression. The common HMRs and TS-HMRs are each enriched for distinct Transcription Factor Binding Sites (TFBS). C/EBPβ binds to methylated regions outside of HMRs while CTCF prefers to bind in HMRs, highlighting these two parts of the genome and their potential interactions. Keratinocytes and fibroblasts are of epithelial and mesenchymal origin. High-resolution methylation maps in these two cell types can be used as reference methylomes for analyzing epigenetic mechanisms in several diseases including cancer. Please see related article at the following link: http://www.epigeneticsandchromatin.com/content/7/1/34.
    Epigenetics & Chromatin 12/2014; 7:35. DOI:10.1186/1756-8935-7-35 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is an epigenetic modification that plays an important role during mammalian development. Around birth in humans, the main site of red blood cell production moves from the fetal liver to the bone marrow. DNA methylation changes at the β-globin locus and a switch from fetal to adult hemoglobin production characterize this transition. Understanding this globin switch may improve the treatment of patients with sickle cell disease and β-thalassemia, two of the most common Mendelian diseases in the world. The goal of our study was to describe and compare the genome-wide patterns of DNA methylation in fetal and adult human erythroblasts. We used the Illumina HumanMethylation 450 k BeadChip to measure DNA methylation at 402,819 CpGs in ex vivo-differentiated erythroblasts from 12 fetal liver and 12 bone marrow CD34+ donors. We identified 5,937 differentially methylated CpGs that overlap with erythroid enhancers and binding sites for erythropoiesis-related transcription factors. Combining this information with genome-wide association study results, we show that erythroid enhancers define particularly promising genomic regions to identify new genetic variants associated with fetal hemoglobin (HbF) levels in humans. Many differentially methylated CpGs are located near genes with unanticipated roles in red blood cell differentiation and proliferation. For some of these new candidate genes, we confirm the correlation between DNA methylation and gene expression levels in red blood cell progenitors. We also provide evidence that DNA methylation and genetic variation at the β-globin locus independently control globin gene expression in adult erythroblasts. Our DNA methylome maps confirm the widespread dynamic changes in DNA methylation that occur during human erythropoiesis. These changes tend to happen near erythroid enhancers, further highlighting their importance in erythroid regulation and HbF production. Finally, DNA methylation may act independently of the transcription factor BCL11A to repress fetal hemoglobin production. This provides cues on strategies to more efficiently re-activate HbF production in sickle cell disease and β-thalassemia patients.
    Genome Medicine 12/2015; 7(1):1. DOI:10.1186/s13073-014-0122-2 · 4.94 Impact Factor

Full-text (2 Sources)

Download
6 Downloads
Available from
Sep 2, 2014