Interaction of holothurian triterpene glycoside with biomembranes of mouse immune cells

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
International immunopharmacology (Impact Factor: 2.47). 06/2012; 14(1):1-8. DOI: 10.1016/j.intimp.2012.05.020
Source: PubMed


The in vitro interactions between triterpene glycoside, cucumarioside A(2)-2, isolated from the Far-Eastern holothurian Cucumaria japonica, and mouse splenocyte and peritoneal macrophage biomembranes were studied. Multiple experimental approaches were employed, including determination of biomembrane microviscosity, membrane potential and Ca(2+) signaling, and radioligand binding assays. Cucumarioside A(2)-2 exhibited strong cytotoxic effect in the micromolar range of concentrations and showed pronounced immunomodulatory activity in the nanomolar concentration range. It was established that the cucumarioside A(2)-2 effectively interacted with immune cells and increased the cellular biomembrane microviscosity. This interaction led to a dose-dependent reversible shift in cellular membrane potential and temporary biomembrane depolarization; and an increase in [Ca(2+)](i) in the cytoplasm. It is suggested that there are at least two binding sites for [(3)H]-cucumarioside A(2)-2 on cellular membranes corresponding to different biomembrane components: a low affinity site match to membrane cholesterol that is responsible for the cytotoxic properties, and a high affinity site corresponding to a hypothetical receptor that is responsible for immunostimulation.

17 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frondoside A, a major triterpene glycoside from North Atlantic commercially harvested sea cucumber Cucumaria frondosa, possesses strong immunomodulatory properties in subtoxic doses. Frondoside A stimulates lysosomal activity of mouse macrophages in vivo at a maximal effective stimulatory dose of 0.2 microg per mouse and is maintained over 10 days. This glycoside also shows a 30% stimulation of lysosomal activity in mouse macrophages in vitro at concentrations of 0.1-0.38 microg/mL. Frondoside A enhances macrophage phagocytosis of the bacterium Staphylococcus aureus in vitro at a maximal effective concentration of 0.001 microg/mL. Frondoside A stimulates reactive oxygen species formation in macrophages in vitro at a maximal effective concentration of 0.001 microg/mL. Frondoside A stimulates an increase in the number of antibody plaque-forming cells (normally B-cells in spleen) in vivo with a maximal stimulatory effect at a concentration of 0.2 microg per mouse (stimulatory index, 1.86). Frondoside A has a weak effect upon immunoglobulin (Ig) M production after immunization with sheep erythrocytes in mice. Frondoside A does not stimulate Ig production in mice and does not significantly enhance the ovalbumin-stimulated IgM and IgG antibody levels in ovalbumin-immunized mice. Hence frondoside A is an immunostimulant of cell-based immunity including phagocytosis without a significant effect on amplification of humoral immune activity or adjuvant properties. Therefore, frondoside A may provide curative and/or preventive treatment options against diseases wherein a depleted immune status contributes to the pathological processes.
    Journal of medicinal food 10/2008; 11(3):443-53. DOI:10.1089/jmf.2007.0530 · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In non-cytotoxic concentrations, frondoside A (1) from the sea cucumber Cucumaria okhotensis and cucumarioside A2-2 (2) from C. japonica, as well as their complexes with cholesterol block the activity of membrane transport P-glycoprotein in cells of the ascite form of mouse Ehrlich carcinoma. They prevent in this way an efflux of fluorescent probe Calcein from the cells. Since the blocking of P-glycoprotein activity results in decrease of multidrug resistance, these glycosides and their complexes with cholesterol may be considered as potential inhibitors of multidrug resistance of tumor cells.
    Natural product communications 10/2013; 8(10):1377-80. · 0.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
    Frontiers in Chemistry 09/2014; 2:77. DOI:10.3389/fchem.2014.00077
Show more

Similar Publications