Downregulation of Brain Phosphodiesterase Type IV Measured with 11C-(R)-Rolipram Positron Emission Tomography in Major Depressive Disorder

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
Biological psychiatry (Impact Factor: 9.47). 06/2012; 72(7):548-54. DOI: 10.1016/j.biopsych.2012.04.030
Source: PubMed

ABSTRACT Phosphodiesterase type IV (PDE4), an important component of the cyclic adenosine monophosphate (cAMP) cascade, selectively metabolizes cAMP in the brain to the inactive monophosphate. Basic studies suggest that PDE4 mediates the effects of several antidepressants. This study sought to quantify the binding of (11)C-(R)-rolipram, a PDE4 inhibitor, as an indirect measure of this enzyme's activity in the brain of individuals with major depressive disorder (MDD) compared with healthy control subjects.
(11)C-(R)-Rolipram brain positron emission tomography scans were performed in 28 unmedicated MDD subjects and 25 age- and gender-matched healthy control subjects. Patients were moderately depressed and about one half were treatment-naive. (11)C-(R)-Rolipram binding in the brain was measured using arterial (11)C-(R)-rolipram levels to correct for the influence of cerebral blood flow.
Major depressive disorder subjects showed a widespread, approximately 20% reduction in (11)C-(R)-rolipram binding (p = .002), which was not caused by different volumes of gray matter. Decreased rolipram binding of similar magnitudes was observed in most brain areas. Rolipram binding did not correlate with the severity of depressive or anxiety symptoms.
This study is the first to demonstrate that brain levels of PDE4, a critical enzyme that regulates cAMP, are decreased in unmedicated individuals with MDD in vivo. These results are in line with human postmortem and rodent studies demonstrating downregulation of the cAMP cascade in MDD and support the hypothesis that agents such as PDE4 inhibitors, which increase activity within the cAMP cascade, may have antidepressant effects.

Download full-text


Available from: Sami S Zoghbi, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative PET studies of neuroreceptor tracers typically require that arterial input function be measured. The aim of this study was to explore the use of a population-based input function (PBIF) and an image-derived input function (IDIF) for [(11)C](R)-rolipram kinetic analysis, with the goal of reducing - and possibly eliminating - the number of arterial blood samples needed to measure parent radioligand concentrations. A PBIF was first generated using [(11)C](R)-rolipram parent time-activity curves from 12 healthy volunteers (Group 1). Both invasive (blood samples) and non-invasive (body weight, body surface area, and lean body mass) scaling methods for PBIF were tested. The scaling method that gave the best estimate of the Logan-V(T) values was then used to determine the test-retest variability of PBIF in Group 1 and then prospectively applied to another population of 25 healthy subjects (Group 2), as well as to a population of 26 patients with major depressive disorder (Group 3). Results were also compared to those obtained with an image-derived input function (IDIF) from the internal carotid artery. In some subjects, we measured arteriovenous differences in [(11)C](R)-rolipram concentration to see whether venous samples could be used instead of arterial samples. Finally, we assessed the ability of IDIF and PBIF to discriminate depressed patients (MDD) and healthy subjects. Arterial blood-scaled PBIF gave better results than any non-invasive scaling technique. Excellent results were obtained when the blood-scaled PBIF was prospectively applied to the subjects in Group 2 (V(T) ratio 1.02±0.05; mean±SD) and Group 3 (V(T) ratio 1.03±0.04). Equally accurate results were obtained for two subpopulations of subjects drawn from Groups 2 and 3 who had very differently shaped (i.e. "flatter" or "steeper") input functions compared to PBIF (V(T) ratio 1.07±0.04 and 0.99±0.04, respectively). Results obtained via PBIF were equivalent to those obtained via IDIF (V(T) ratio 0.99±0.05 and 1.00±0.04 for healthy subjects and MDD patients, respectively). Retest variability of PBIF was equivalent to that obtained with full input function and IDIF (14.5%, 15.2%, and 14.1%, respectively). Due to [(11)C](R)-rolipram arteriovenous differences, venous samples could not be substituted for arterial samples. With both IDIF and PBIF, depressed patients had a 20% reduction in [(11)C](R)-rolipram binding as compared to control (two-way ANOVA: p=0.008 and 0.005, respectively). These results were almost equivalent to those obtained using 23 arterial samples. Although some arterial samples are still necessary, both PBIF and IDIF are accurate and precise alternatives to full arterial input function for [(11)C](R)-rolipram PET studies. Both techniques give accurate results with low variability, even for clinically different groups of subjects and those with very differently shaped input functions.
    NeuroImage 08/2012; 63(3):1532-41. DOI:10.1016/j.neuroimage.2012.08.007 · 6.13 Impact Factor
  • Biological psychiatry 10/2012; 72(7):524-5. DOI:10.1016/j.biopsych.2012.07.017 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic nucleotide phosphodiesterases (PDEs) are responsible for the breakdown of cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). As such, they are crucial regulators of levels of cyclic nucleotide-mediated signaling. cAMP signaling and cGMP signaling have been associated with neuroplasticity and protection, and influencing their levels in the cell by inhibition of PDEs has become a much studied target for treatment in a wide array of disorders, including neurodegenerative disorders. In this review, we will focus on the involvement of PDEs in neurodegenerative disorders. In comparison with preclinical work, data on human patients are scarce. Alzheimer's disease is associated with changes in PDE4, PDE7, and PDE8 expression in the brain. Altered functioning of PDE4 as well as PDE11 is associated with major depressive disorder. In multiple sclerosis, there are indications of alterations in expression of several PDE subtypes in the central nervous system; however, evidence is indirect. In Huntington's disease and Parkinson's disease, most research has focused on PDE1B and PDE10, because of their abundant presence in striatal neurons. In another rare, neurodegenerative striatal motor disorder, that is, autosomal-dominant striatal degeneration, genetic defects in PDE8B gene are thought to underlie the neurodegenerative processes. Although the latter disorder has showed a causative dysfunction of PDEs, this does not hold for the neurodegenerative disorders discussed above, in which changes in PDE levels seemingly rather represent secondary changes and compensation to prior existing dysfunction. However, normalizing cyclic nucleotide signaling via PDE inhibition remains interesting for the treatment of neurodegenerative disorders. © 2012 IUBMB IUBMB Life, 2012.
    International Union of Biochemistry and Molecular Biology Life 12/2012; 64(12). DOI:10.1002/iub.1104 · 2.76 Impact Factor