miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
Biochemical Journal (Impact Factor: 4.65). 06/2012; 446(2):291-300. DOI: 10.1042/BJ20120386
Source: PubMed

ABSTRACT Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug transporters, drug-metabolizing enzymes, and tight junctions in the small intestine function as an absorption barrier and sometimes as a facilitator of orally administered drugs. The expression of these proteins often fluctuates and thereby causes individual pharmacokinetic variability. MicroRNAs (miRNAs), which are small non-coding RNAs, have recently emerged as a new class of gene regulator. MiRNAs post-transcriptionally regulate gene expression by binding to target mRNA to suppress its translation or regulate its degradation. They have been shown to be key regulators of proteins associated with pharmacokinetics. Moreover, the role of miRNAs on the expression of some proteins expressed in the small intestine has recently been clarified. In this review, we summarize current knowledge regarding the role of miRNAs in the regulation of drug transporters, drug-metabolizing enzymes, and tight junctions as well as its implication for intestinal barrier function. MiRNAs play vital roles in the differentiation, architecture, and barrier function of intestinal epithelial cells, and directly and/or indirectly regulate the expression and function of proteins associated with drug absorption in intestinal epithelial cells. Moreover, the variation of miRNA expression caused by pathological and physiological conditions as well as genetic factors should affect the expression of these proteins. Therefore, miRNAs could be significant factors affecting inter- and intra-individual variation in the pharmacokinetics and intestinal absorption of drugs. Overall, miRNAs could be promising targets for personalized pharmacotherapy or other attractive therapies through intestinal absorption of drugs.
    Pharmacology [?] Therapeutics 01/2014; · 7.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs.
    World Journal of Gastroenterology 04/2014; 20(15):4288-4299. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR(TM)miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.
    PLoS ONE 01/2013; 8(12):e84425. · 3.53 Impact Factor