Tetrahydrobiopterin supplementation enhances carotid artery compliance in healthy older men: a pilot study.

1] Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA [2] Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, USA.
American Journal of Hypertension (Impact Factor: 3.4). 06/2012; 25(10):1050-4. DOI: 10.1038/ajh.2012.70
Source: PubMed

ABSTRACT Background
We performed a pilot study to test the hypothesis that acute oral ingestion of tetrahydrobiopterin (BH(4)), a key cofactor modulating vascular nitric oxide (NO) synthase activity, improves large elastic artery stiffness with aging in men.Methods
Healthy older (63 ± 2 years; n = 8) and young (age 25 ± 1 years; n = 6) men were studied 3 h after ingestion of BH(4) (10 mg·kg(-1) body weight) or placebo on separate days in a randomized, placebo-controlled, double-blind study.ResultsBaseline carotid artery compliance was 37% lower (0.17 ± 0.02 vs. 0.22 ± 0.02 mm/mm Hg·10(-1)) and β-stiffness was 42% higher (7.3 ± 1.1 vs. 4.2 ± 0.5 AU) in the older men (both P < 0.05). BH(4) ingestion markedly increased circulating BH(4) concentrations in both groups (17-19-fold, P < 0.05), but increased compliance (+39% to 0.23 ± 0.02 mm/mm Hg(.)10(-1), P < 0.01) and decreased β-stiffness index (-27% to 5.3 ± 0.7 AU, P < 0.01) only in the older men. BH(4) also reduced carotid systolic blood pressure (SBP) in the older men (P < 0.05).Conclusions
These preliminary results support the possibility that limited BH(4) bioavailability contributes to impaired carotid artery compliance in healthy older men. Further studies are needed to determine if increasing BH(4) bioavailability though oral BH(4) supplementation may have therapeutic efficacy for improving large elastic artery compliance and reducing central SBP with aging.American Journal of Hypertension 2012; doi:10.1038/ajh.2012.70.


Available from: Allison E DeVan, Oct 07, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and supplementation with BH4 improves NO-dependent vasodilation. NO also reduces sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 15, 399 ± 57 g) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and a stimulating electrode on the lumbar sympathetic chain. Triceps surae muscles were stimulated to contract rhythmically at 30% and 60% of maximal contractile force (MCF). The percentage change of femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction in control and acute BH4 supplementation (20 mg·kg−1 + 10 mg·kg−1·h−1, IA) conditions. BH4 reduced (P < 0.05) the vasoconstrictor response to sympathetic stimulation (i.e., decrease in FVC) at rest (Control: 2 Hz: −28 ± 5%FVC; 5 Hz: −45 ± 5%; BH4: 2 Hz: −17 ± 4%FVC; 5 Hz: −34 ± 7%FVC) and during muscular contraction at 30% MCF (Control: 2 Hz: −14 ± 6%FVC; 5 Hz: −28 ± 11%; BH4: 2 Hz: −6 ± 6%FVC; 5 Hz: −16 ± 10%) and 60% MCF (Control: 2 Hz: −7 ± 3%FVC; 5 Hz: −16 ± 6%FVC; BH4: 2 Hz: −2 ± 3%FVC; 5 Hz: −11 ± 6%FVC). These data are consistent with our hypothesis that acute BH4 supplementation decreases sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle.
    10/2014; 2(10). DOI:10.14814/phy2.12164
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
    Antioxidants & Redox Signaling 12/2013; DOI:10.1089/ars.2013.5566 · 7.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Tetrahydrobiopterin (BH4) is a cofactor of nitric oxide synthase (NOS). Nitric oxide (NO) bioavailability is reduced during the early stage of vascular diseases, such as coronary artery disease, hypercholesterolemia, hypertension, and diabetic vasculopathy, and even throughout the entire progression of atherosclerosis. Methods. A literature search was performed using electronic databases (up to January 31, 2014), including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL), using an established strategy. Results. Fourteen articles were selected with a total of 370 patients. Ten of the fourteen studies showed a significant improvement in the endothelial dysfunction of various cardiovascular disease groups with BH4 supplementation compared with the control groups or placebos. Three studies showed no positive outcome, and one study showed that low-dose BH4 had no effect but that high-dose BH4 did have a significantly different result. Conclusions. This review concludes that supplementation with BH4 and/or augmentation of the endogenous levels of BH4 will be a novel approach to improve the endothelial dysfunction observed in various cardiovascular diseases. BH4 might be considered to be a new therapeutic agent to prevent the initiation and progression of cardiovascular disease.
    Evidence-based Complementary and Alternative Medicine 12/2014; 2014:850312. DOI:10.1155/2014/850312 · 2.18 Impact Factor