Article

The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells.

Department of Otolaryngology - Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
European Journal of Neuroscience (Impact Factor: 3.67). 06/2012; 36(3):2302-10. DOI: 10.1111/j.1460-9568.2012.08159.x
Source: PubMed

ABSTRACT Calcium is tightly regulated in cochlear outer hair cells (OHCs). It enters mainly via mechanotransducer (MT) channels and is extruded by the plasma membrane calcium ATPase (PMCA)2 isoform of the PMCA, mutations in which cause hearing loss. To assess how pump expression matches the demands of Ca(2+) homeostasis, the distribution of PMCA2 at different cochlear locations during development was quantified using immunofluorescence and post-embedding immunogold labeling. The PMCA2 isoform was confined to stereociliary bundles, first appearing at the base of the cochlea around post-natal day (P)0 followed by the middle and then the apex by P3, and was unchanged after P8. The developmental appearance matched the maturation of the MT channels in rat OHCs. High-resolution immunogold labeling in adult rats showed that PMCA2 was distributed along the membranes of all three rows of OHC stereocilia at similar densities and at about a quarter of the density in inner hair cell stereocilia. The difference between OHCs and inner hair cells was similar to the ratio of their MT channel resting open probabilities. Gold particle counts revealed no difference in PMCA2 density between low- and high-frequency OHC bundles despite larger MT currents in high-frequency OHCs. The PMCA2 density in OHC stereocilia was determined in low- and high-frequency regions from calibration of immunogold particle counts as 2200/μm(2) from which an extrusion rate of ∼200 ions/s per pump was inferred. The limited ability of PMCA2 to extrude the Ca(2+) load through MT channels may constitute a major cause of OHC vulnerability and high-frequency hearing loss.

0 Bookmarks
 · 
87 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The plasma membrane Ca(2+) ATPase 2 (PMCA2) is necessary for auditory transduction and serves as the primary Ca(2+) extrusion mechanism in auditory stereocilia bundles. To date, studies examining PMCA2 in auditory function using mutant mice have focused on the phenotype of late adolescent and adult mice. Here, we focus on the changes of PMCA2 in the maturation of auditory sensitivity by comparing auditory responses to RNA and protein expression levels in haploinsufficient PMCA2 and wild-type mice from P16 into adulthood. Auditory sensitivity in wild-type mice improves between P16 and 3 weeks of age, when it becomes stable through adolescence. In haploinsufficient mice, there are frequency-dependent loss of sensitivity and subsequent recovery of thresholds between P16 and adulthood. RNA analysis demonstrates that α-Atp2b2 transcript levels increase in both wild-type and heterozygous cochleae between P16 and 5 weeks. The increases reported for the α-Atp2b2 transcript type during this stage in development support the requisite usage of this transcript for mature auditory transduction. PMCA2 expression also increases in wild-type cochleae between P16 and 5 weeks suggesting that this critical auditory protein may be involved in normal maturation of auditory sensitivity after the onset of hearing. We also characterize expression levels of two long noncoding RNA genes, Gm15082 (lnc82) and Gm15083 (lnc83), which are transcribed on the opposite strand in the 5' region of Atp2b2 and propose that the lnc83 transcript may be involved in regulating α-Atp2b2 expression.
    Journal of the Association for Research in Otolaryngology 05/2014; 15(4). · 2.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1-100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca(2+); two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca(2+) influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca(2+) also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer.
    Physiological Reviews 07/2014; 94(3):951-986. · 29.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tight regulation of calcium (Ca(2+)) concentrations in the stereocilia bundles of auditory hair cells of the inner ear is critical to normal auditory transduction. The plasma membrane Ca(2+) ATPase 2 (PMCA2), encoded by the Atp2b2 gene, is the primary mechanism for clearance of Ca(2+) from auditory stereocilia, keeping intracellular levels low, and also contributes to maintaining adequate levels of extracellular Ca(2+) in the endolymph. This study characterizes a novel null Atp2b2 allele, dfw(i5), by examining cochlear anatomy, vestibular function and auditory physiology in mutant mice. Loss of auditory function in PMCA2 mutants can be attributed to dysregulation of intracellular Ca(2+) inside the stereocilia bundles. However, extracellular Ca(2+) ions surrounding the stereocilia are also required for rigidity of cadherin 23, a component of the stereocilia tip-link encoded by the Cdh23 gene. This study further resolves the interaction between Atp2b2 and Cdh23 in a gene dosage and frequency-dependent manner, and finds that low frequencies are significantly affected by the interaction. In +/dfw(i5) mice, one mutant copy of Cdh23 is sufficient to cause broad frequency hearing impairment. Additionally, we report another modifying interaction with Atp2b2 on auditory sensitivity, possibly caused by an unidentified hearing loss gene in mice.
    Hearing research 06/2013; · 2.85 Impact Factor