Exome sequencing in an SCA14 family demonstrates its utility in diagnosing heterogeneous diseases.

Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, University College London, London, UK.
Neurology (Impact Factor: 8.3). 06/2012; 79(2):127-31. DOI: 10.1212/WNL.0b013e31825f048e
Source: PubMed

ABSTRACT Genetic heterogeneity is common in many neurologic disorders. This is particularly true for the hereditary ataxias where at least 36 disease genes or loci have been described for spinocerebellar ataxia and over 100 genes for neurologic disorders that present primarily with ataxia. Traditional genetic testing of a large number of candidate genes delays diagnosis and is expensive. In contrast, recently developed genomic techniques, such as exome sequencing that targets only the coding portion of the genome, offer an alternative strategy to rapidly sequence all genes in a comprehensive manner. Here we describe the use of exome sequencing to investigate a large, 5-generational British kindred with an autosomal dominant, progressive cerebellar ataxia in which conventional genetic testing had not revealed a causal etiology.
Twenty family members were seen and examined; 2 affected individuals were clinically investigated in detail without a genetic or acquired cause being identified. Exome sequencing was performed in one patient where coverage was comprehensive across the known ataxia genes, excluding the known repeat loci which should be examined using conventional analysis.
A novel p.Arg26Gly change in the PRKCG gene, mutated in SCA14, was identified. This variant was confirmed using Sanger sequencing and showed segregation with disease in the entire family.
This work demonstrates the utility of exome sequencing to rapidly screen heterogeneous genetic disorders such as the ataxias. Exome sequencing is more comprehensive, faster, and significantly cheaper than conventional Sanger sequencing, and thus represents a superior diagnostic screening tool in clinical practice.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Disorders of cobalamin deficiency are a heterogeneous group of disorders with at least 19 autosomal recessive-associated genes. Familial samples of an infant who died due to presumed cobalamin deficiency were referred for clinical exome sequencing. The patient died before obtaining a blood sample or skin biopsy, autopsy was declined, and DNA yielded from the newborn screening blood spot was insufficient for diagnostic testing. Whole-exome sequencing of the mother, father, and unaffected sister and tailored bioinformatics analysis was applied to search for mutations in underlying disorders with recessive inheritance. This approach identified alterations within two genes, each of which was carried by one parent. The mother carried a missense alteration in the MTR gene (c.3518C>T; p.P1173L) which was absent in the father and the sister. The father carried a translational frameshift alteration in the LMBRD1 gene (c.1056delG; p.L352Lfs*18) which was absent in the mother and present in the heterozygous state in the sister. These mutations in the MTR (MIM# 156570) and LMBRD1 (MIM# 612625) genes have been described in patients with disorders of cobalamin metabolism complementation groups cblG and cblF, respectively. The child's clinical presentation and biochemical results demonstrated overlap with both cblG and cblF. Sanger sequencing using DNA from the infant's blood spot confirmed the inheritance of the two alterations in compound heterozygous form. We present the first example of exome sequencing leading to a diagnosis in the absence of the affected patient. Furthermore, the data support the possibility for potential digenic inheritance associated with cobalamin deficiency.
    03/2014; DOI:10.1007/8904_2014_294
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid assemblies are associated with a wide range of human disorders, including Alzheimer's and Parkinson's diseases. Here we identify protein kinase C (PKC) γ, a serine/threonine kinase mutated in the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14), as a novel amyloidogenic protein with no previously characterized amyloid-prone domains. We found that overexpression of PKCγ in cultured cells, as well as in vitro incubation of PKCγ without heat or chemical denaturants, cause amyloid-like fibril formation of this protein. We also observed that SCA14-associated mutations in PKCγ accelerate the amyloid-like fibril formation both in cultured cells and in vitro. We show that the C1A and kinase domains of PKCγ are involved in its soluble dimer and aggregate formation, and that SCA14-associated mutations in the C1 domain cause its misfolding and aggregation. Furthermore, long-term time-lapse imaging indicates that aggregates of mutant PKCγ are highly toxic to neuronal cells. Based on these findings, we propose that PKCγ could form amyloid-like fibrils in physiological and/or pathophysiological conditions such as SCA14. More generally, our results provide novel insights into the mechanism of amyloid-like fibril formation by multi-domain proteins.
    Human Molecular Genetics 09/2014; DOI:10.1093/hmg/ddu472 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar ataxias are a diverse collection of neurologic disorders with causes ranging from common acquired etiologies to rare genetic conditions. Numerous genetic disorders have been associated with chronic progressive ataxia and this consequently presents a diagnostic challenge for the clinician regarding how to approach and prioritize genetic testing in patients with such clinically heterogeneous phenotypes. Additionally, while the value of genetic testing in early-onset and/or familial cases seems clear, many patients with ataxia present sporadically with adult onset of symptoms and the contribution of genetic variation to the phenotype of these patients has not yet been established.
    JAMA Neurology 08/2014; 71(10). DOI:10.1001/jamaneurol.2014.1944 · 7.01 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014