Feature binding and attention in working memory: A resolution of previous contradictory findings.

a Institute of Psychological Sciences , University of Leeds , Leeds , UK.
Quarterly journal of experimental psychology (2006) (Impact Factor: 1.82). 06/2012; 65(12):2369-2383. DOI: 10.1080/17470218.2012.687384
Source: PubMed

ABSTRACT We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer (Baddeley, 2000) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer (Baddeley, Allen, & Hitch, 2011). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.
    Aging Neuropsychology and Cognition 03/2014; · 1.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
    Journal of Experimental Psychology Learning Memory and Cognition 02/2014; · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A popular procedure for investigating working memory processes has been the visual change-detection procedure. Models of performance based on that procedure, however, tend to be based on performance accuracy and treat working memory search as a one-step process, in which memory representations are compared to a test probe to determine if a match is present. To gain a clearer understanding of how search of these representations operate in the change-detection task, we examined reaction time in two experiments, with a single-item probe either located centrally or at the location of an array item. Contrary to current models of visual working memory capacity, our data point to a two-stage search process: a fast first step to check for the novelty of the probe and, in the absence of such novelty, a second, slower step to search exhaustively for a match between the test probe and a memory representation. In addition to these results, we found that participants tended not to use location information provided by the probe that theoretically could have abbreviated the search process. We suggest some basic revisions of current models of processing in this type of visual working memory task.
    Attention Perception & Psychophysics 07/2014; · 1.97 Impact Factor


Available from
May 26, 2014