Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic op/op mice.

Division of Hard Tissue Research, Institute for Oral Science, School of Dentistry, Matsumoto Dental University, Nagano 399-0781, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2012; 109(25):10006-11. DOI: 10.1073/pnas.1207361109
Source: PubMed

ABSTRACT Osteoclasts are generated from monocyte/macrophage-lineage precursors in response to colony-stimulating factor 1 (CSF-1) and receptor activator of nuclear factor-κB ligand (RANKL). CSF-1-mutated CSF-1(op/op) mice as well as RANKL(-/-) mice exhibit osteopetrosis (OP) caused by osteoclast deficiency. We previously identified RANKL receptor (RANK)/CSF-1 receptor (CSF-1R) double-positive cells as osteoclast precursors (OCPs), which existed in bone in RANKL(-/-) mice. Here we show that OCPs do not exist in bone but in spleen in CSF-1(op/op) mice, and spleen acts as their reservoir. IL-34, a newly discovered CSF-1R ligand, was highly expressed in vascular endothelial cells in spleen in CSF-1(op/op) mice. Vascular endothelial cells in bone also expressed IL-34, but its expression level was much lower than in spleen, suggesting a role of IL-34 in the splenic generation of OCPs. Splenectomy (SPX) blocked CSF-1-induced osteoclastogenesis in CSF-1(op/op) mice. Osteoclasts appeared in aged CSF-1(op/op) mice with up-regulation of IL-34 expression in spleen and bone. Splenectomy blocked the age-associated appearance of osteoclasts. The injection of 2-methylene-19-nor-(20S)-1α,25(OH)(2)D(3) (2MD), a potent analog of 1α,25-dihidroxyvitamin D(3), into CSF-1(op/op) mice induced both hypercalcemia and osteoclastogenesis. Administration of 2MD enhanced IL-34 expression not only in spleen but also in bone through a vitamin D receptor-mediated mechanism. Either splenectomy or siRNA-mediated knockdown of IL-34 suppressed 2MD-induced osteoclastogenesis. These results suggest that IL-34 plays a pivotal role in maintaining the splenic reservoir of OCPs, which are transferred to bone in response to diverse stimuli, in CSF-1(op/op) mice. The present study also suggests that the IL-34 gene in vascular endothelial cells is a unique target of vitamin D.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article DOI: 10.1038/bonekey.2013.229.].
    BoneKEy reports. 01/2014; 3:522.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colony-stimulating factor-1 (CSF-1) is widely expressed and considered to regulate the development, maintenance, and function of mononuclear phagocyte lineage cells such as monocytes, macrophages, dendritic cells (DCs), Langerhans cells (LCs), microglia, and osteoclasts. Interleukin-34 (IL-34) was recently identified as an alternative ligand for the CSF-1 receptor (CSF-1R) through functional proteomics experiments. It is well established that the phenotype of CSF-1R-deficient (CSF-1R(-/-)) mice is more severe than that of mice bearing a spontaneous null mutation in CSF-1 (CSF-1(op/op)). CSF-1R(-/-) mice are severely depleted of macrophages and completely lack LCs, microglia, and osteoclasts during their lifetime. In contrast, CSF-1(op/op) mice exhibit late-onset macrophage development and osteoclastogenesis, whereas they show modestly reduced numbers of microglia and a relatively normal LC development. In contrast, IL-34-deficient (IL-34(-/-)) mice show a marked reduction of LCs and a decrease in microglia. IL-34 and CSF-1 display different spatiotemporal expression patterns and have distinct biological functions. In this review, we focus on the functional similarities and differences between IL-34 and CSF-1 in vivo.
    Journal of Bone and Mineral Metabolism 06/2013; · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-34 is a recently discovered cytokine that acts on tissue resident macrophages and Langerhans cells, upon binding the receptor for CSF-1, CSF-1R. The existence of two ligands for CSF-1R, IL-34 and CSF-1, raises several intriguing questions. Are IL-34 and CSF-1 redundant or does each perform temporally and spatially distinct functions? Is IL-34 involved in human pathology? Would therapeutic strategies based on selective inhibition or administration of either IL-34 or CSF-1 be advantageous for preventing human pathology? Recent in vivo studies indicate that IL-34 promotes the development, survival and function of microglia and Langerhans cells; therefore, this cytokine may predominately function in brain and skin biology. Here, we review the evidence for IL-34 as a key cytokine in the development and function of these two diverse cell types and discuss its potential role in pathological conditions.This article is protected by copyright. All rights reserved
    European Journal of Immunology 04/2014; · 4.97 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014