Article

Aminoglycoside-induced hearing loss in HIV-positive and HIV-negative multidrug-resistant tuberculosis patients.

Department of Otolaryngology, Kimberley Hospital Complex
South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde (Impact Factor: 1.71). 06/2012; 102(6):363-6.
Source: PubMed

ABSTRACT Background. Ototoxicity following aminoglycoside treatment for multidrug-resistant tuberculosis (MDR-TB) is a significant problem. This study documents the incidence of ototoxicity in HIV-positive and HIV-negative patients with MDR-TB and presents clinical guidelines relating to ototoxicity. Methods. A prospective cohort study of 153 MDR-TB patients with normal hearing and middle ear status at baseline controlling for 6 mitochondrial mutations associated with aminoglycoside-related ototoxicity, at Brooklyn Chest Hospital in Cape Town. Pure tone audiometry was performed monthly for 3 months to determine hearing loss. HIV status was recorded, as was the presence of 6 mutations in the MT-RNR1 gene. Results. Fifty-seven per cent developed high-frequency hearing loss. HIV-positive patients (70%) were more likely to develop hearing loss than HIV-negative patients (42%). Of 115 patients who were genetically screened, none had MT-RNR1 mutations. Conclusion. Ototoxic hearing loss is common in MDR-TB patients treated with aminoglycosides. HIV-positive patients are at increased risk of ototoxicity. Auditory monitoring and auditory rehabilitation should be an integral part of the package of care of MDR-TB patients.

Full-text

Available from: Lucretia Petersen, Mar 20, 2015
4 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aminoglycosides are a critical component of multidrug-resistant tuberculosis (MDR-TB) treatment but data on their efficacy and adverse effects in this population is scarce. We determined the effect of amikacin over treatment outcomes and development of hearing loss in MDR-TB patients.
    BMC Infectious Diseases 10/2014; 14(1):542. DOI:10.1186/1471-2334-14-542 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multi drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant TB (XDR-TB) are burgeoning global problems with high mortality which threaten to destabilise TB control programs in several parts of the world. Of alarming concern is the emergence, in large numbers, of patients with resistance beyond XDR-TB (totally drug-resistant TB; TDR-TB or extremely drug resistant TB; XXDR-TB). Given the burgeoning global phenomenon of MDR-TB, XDR-TB and TDR-TB, and increasing international migration and travel, healthcare workers, researchers, and policy makers in TB endemic and non-endemic countries should familiarise themselves with issues relevant to the management of these patients. Given the lack of novel TB drugs and limited access to existing drugs such as linezolid and bedaquiline in TB endemic countries, significant numbers of therapeutic failures are emerging from the ranks of those with XDR-TB. Given the lack of appropriate facilities in resource-limited settings, such patients are being discharged back into the community where there is likely ongoing disease spread. In the absence of effective drug regimens, in appropriate patients, surgery is a critical part of management. Here we review the diagnosis, medical and surgical management of MDR-TB and XDR-TB.
    03/2014; 6(3):186-195. DOI:10.3978/j.issn.2072-1439.2013.11.11
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains a major public health problem, representing the second leading cause of death from infectious diseases globally, despite being nearly 100 % curable. Multidrug-resistant (MDR)-TB, a form of TB resistant to isoniazid and rifampicin (rifampin), two of the key first-line TB drugs, is becoming increasingly common. MDR-TB is treated with a combination of drugs that are less effective but more toxic than isoniazid and rifampicin. These drugs include fluoroquinolones, aminoglycosides, ethionamide, cycloserine, aminosalicyclic acid, linezolid and clofazimine among others. Minor adverse effects are quite common and they can be easily managed with symptomatic treatment. However, some adverse effects can be life-threatening, e.g. nephrotoxicity due to aminoglycosides, cardiotoxicity due to fluoroquinolones, gastrointestinal toxicity due to ethionamide or para-aminosalicylic acid, central nervous system toxicity due to cycloserine, etc. Baseline evaluation may help to identify patients who are at increased risk for adverse effects. Regular clinical and laboratory evaluation during treatment is very important to prevent adverse effects from becoming serious. Timely and intensive monitoring for, and management of adverse effects caused by, second-line drugs are essential components of drug-resistant TB control programmes; poor management of adverse effects increases the risk of non-adherence or irregular adherence to treatment, and may result in death or permanent morbidity. Treating physicians should have a thorough knowledge of the adverse effects associated with the use of second-line anti-TB drugs, and routinely monitor the occurrence of adverse drug reactions. In this review, we have compiled safety and tolerability information regarding second-line anti-TB drugs in both adults and children.
    Drug Safety 02/2015; 38(3). DOI:10.1007/s40264-015-0267-y · 2.62 Impact Factor