Remembering the past with slow breathing associated with activity in the parahippocampus and amygdala.

Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
Neuroscience Letters (Impact Factor: 2.06). 06/2012; 521(2):98-103. DOI: 10.1016/j.neulet.2012.05.047
Source: PubMed

ABSTRACT Breathing plays an important role in perception of odors and the experience of emotions. We used the dipole tracing method to analyze brain areas related to odor-induced autobiographical memory and emotions estimated from averaged electroencephalograms triggered by inspiration onset during odor presentation. Odor stimuli were perfumes subjects named that elicited a specific, pleasant and personal memory as well as two pleasant odors for controls. The perfumes induced specific emotional responses during memory retrieval, arousal level of the memory, feelings of pleasantness and a sense of familiarity with the odor. Respiration measurement indicated that tidal volume increased and respiratory frequency decreased during presentation of perfume stimuli, showing a deep and slow breathing pattern. Throughout the olfactory stimulation, electroencephalograms and respiration were simultaneously recorded. In the averaged potentials, low frequency oscillation was phase-locked to inspiration. Dipole analysis showed that perfumes activated more widespread areas of the right parahippocampal cortex and converged in the right amygdala compared to control odors. Slow breathing synchronized with odor-induced autobiographical memory and emotions may be subconsciously stored in the parahippocampal cortex and amygdala.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Olfaction is dependent on respiration for the delivery of odorants to the nasal cavity. Taking advantage of the time-locked nature of inspiration and olfactory processing, electroencephalogram dipole modeling (EEG/DT) has previously been used to identify a cascade of inspiration-triggered neural activity moving from primary limbic olfactory regions to frontal cortical areas during odor perception. In this study, we leverage the spatial resolution of functional magnetic resonance imaging (fMRI) alongside the temporal resolution of EEG to replicate and extend these findings. Brain activation identified by both modalities converged within association regions of the orbitofrontal cortex that were activated from approximately 150ms to 300ms after inspiration onset. EEG/DT was additionally sensitive to more transient activity in primary olfactory regions, including the parahippocampal gyrus and amygdala, occurring approximately 50ms post-inspiration. These results provide a partial validation of the spatial profile of the olfactory cascade identified by EEG source modeling, and inform novel future directions in the investigation of human olfaction.
    Respiratory Physiology & Neurobiology 06/2014; · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No previous report has described whether information regarding an odor used in aromatherapy has placebo effects. We investigated whether placebo analgesia was engendered by verbal information regarding the analgesic effects of an odor. Twelve of 24 subjects were provided with the information that a lavender odor would reduce pain (informed), whereas the other 12 subjects were not (not-informed). Concurrent with respiration recording, the subjects were administered a lavender-odor or no-odor treatment during application of painful stimulation to the forefinger. The subjects reported their experience of pain and its unpleasantness on a visual analogue scale after the painful stimulation. The lavender-odor treatment significantly alleviated pain and unpleasantness compared with the no-odor treatment in the informed (P < 0.01) and not-informed groups (P < 0.05). The no-odor treatment in the informed group significantly alleviated pain and unpleasantness compared with both the no-odor and lavender-odor treatments in the not-informed group (P < 0.05). Rapid and shallow breathing induced by the painful stimulation became slow and deep during the lavender-odor and no-odor treatments in both groups. Information regarding a lavender odor, the lavender odor itself, and slower breathing contributed to reduced perceptions of pain and unpleasantness during painful stimulation, suggesting that placebo effects significantly contribute to analgesia in aromatherapy.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:921802. · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24-72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors.
    Frontiers in Behavioral Neuroscience 01/2014; 8:203. · 4.16 Impact Factor