Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans.

Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
Pharmacogenetics and Genomics (Impact Factor: 3.45). 06/2012; 22(8):620-8. DOI: 10.1097/FPC.0b013e32835516e5
Source: PubMed

ABSTRACT Oxidative stress is integral to the development of endothelial dysfunction and cardiovascular disease. As NRF2 is a key transcription factor in antioxidant defense, we aimed to determine whether polymorphisms within the promoter region of the gene encoding NRF2 (NFE2L2) would significantly modify vasodilator responses in humans.
Associations between the -653A/G (rs35652124), -651G/A (rs6706649), and -617C/A (rs6721961) polymorphisms within the NFE2L2 promoter and vascular function were evaluated in healthy African-American (n=64) and white (n=184) individuals. Forearm blood flow (FBF) was measured by strain-gauge venous occlusion plethysmography at baseline and in response to incremental doses of bradykinin or sodium nitroprusside. Forearm vascular resistance (FVR) was calculated as the mean arterial pressure/FBF.
In African Americans, -653G variant allele carriers had significantly lower FBF and higher FVR under basal conditions as well as in response to bradykinin or sodium nitroprusside compared with wild-type individuals (P<0.05 for each comparison). In whites, although no significant associations were observed with the -653A/G genotype, -617A variant allele carriers had significantly higher FVR at baseline and in response to bradykinin or sodium nitroprusside compared with wild-type individuals (P<0.05 for each comparison). The -651G/A polymorphism was not associated with vasodilator responses in either racial group.
Polymorphisms within the NFE2L2 promoter were associated with impaired forearm vasodilator responses in an endothelial-independent manner, suggesting an important role of NRF2 in the regulation of vascular function in humans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Several years have passed since NF-E2-related factor 2 (Nrf2) was demonstrated to regulate the induction of genes encoding antioxidant proteins and phase 2 detoxifying enzymes. Following a number of studies, it was realized that Nrf2 is a key factor for cytoprotection in various aspects, such as anticarcinogenicity, neuroprotection, antiinflammatory response, and so forth. These widespread functions of Nrf2 spring from the coordinated actions of various categories of target genes. The activation mechanism of Nrf2 has been studied extensively. Under normal conditions, Nrf2 localizes in the cytoplasm where it interacts with the actin binding protein, Kelch-like ECH associating protein 1 (Keap1), and is rapidly degraded by the ubiquitin-proteasome pathway. Signals from reactive oxygen species or electrophilic insults target the Nrf2-Keap1 complex, dissociating Nrf2 from Keap1. Stabilized Nrf2 then translocates to the nuclei and transactivates its target genes. Interestingly, Keap1 is now assumed to be a substrate-specific adaptor of Cul3-based E3 ubiquitin ligase. Direct participation of Keap1 in the ubiquitination and degradation of Nrf2 is plausible. The Nrf2-Keap1 system is present not only in mammals, but in fish, suggesting that its roles in cellular defense are conserved throughout evolution among vertebrates. This review article recounts recent knowledge of the Nrf2-Keap1 system, focusing especially on the molecular mechanism of Nrf2 regulation.
    Antioxidants and Redox Signaling 03/2005; 7(3-4):385-94. DOI:10.1089/ars.2005.7.385 · 7.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induction of drug-metabolizing enzymes through the antioxidant response element (ARE)-dependent transcription was initially implicated in chemoprevention against cancer by antioxidants. Recent progress in understanding the biology and mechanism of induction revealed a critical role of induction in cellular defense against electrophilic and oxidative stress. Induction is mediated through a novel signaling pathway via two regulatory proteins, the nuclear factor erythroid 2-related factor 2 (Nrf2) and the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1). Nrf2 binds to Keap1 at a two site-binding interface and is ubiquitinated by the Keap1/cullin 3/ring box protein-1-ubiquitin ligase, resulting in a rapid turnover of Nrf2 protein. Electrophiles and oxidants modify critical cysteine thiols of Keap1 and Nrf2 to inhibit Nrf2 ubiquitination, leading to Nrf2 activation and induction. Induction increases stress resistance critical for cell survival, because knockout of Nrf2 in mice increased susceptibility to a variety of toxicity and disease processes. Collateral to diverse functions of Nrf2, genome-wide search has led to the identification of a plethora of ARE-dependent genes regulated by Nrf2 in an inducer-, tissue-, and disease-dependent manner to control drug metabolism, antioxidant defense, stress response, proteasomal degradation, and cell proliferation. The protective nature of Nrf2 could also be hijacked in a number of pathological conditions by means of somatic mutation, epigenetic alteration, and accumulation of disruptor proteins, promoting drug resistance in cancer and pathologic liver features in autophagy deficiency. The repertoire of ARE inducers has expanded enormously; the therapeutic potential of the inducers has been examined beyond cancer prevention. Developing potent and specific ARE inducers and Nrf2 inhibitors holds certain new promise for the prevention and therapy against cancer, chronic disease, and toxicity.
    Pharmacological reviews 09/2012; 64(4):1055-81. DOI:10.1124/pr.110.004333 · 18.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factor Nrf2 (NF-E2-related factor-2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply-side of Nrf2, especially regulation of Nrf2 gene transcription. Using genetically engineered mouse models, here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation. In excellent agreement, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in human NRF2 upstream-promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and consequently an increased risk of lung cancer, especially in ever-smokers. Our results support the notion that in addition to control over proteasomal degradation and derepression from the degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence transcription levels of the NRF2 gene for future personalized medicine.
    Molecular and Cellular Biology 04/2013; DOI:10.1128/MCB.00065-13 · 5.04 Impact Factor