Article

Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis.

Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
Journal of Hepatology (Impact Factor: 9.86). 06/2012; 57(4):860-6. DOI: 10.1016/j.jhep.2012.05.019
Source: PubMed

ABSTRACT Ethanol-inducible cytochrome P450 2E1 (CYP2E1) activity contributes to oxidative stress. However, CYP2E1 may have an important role in the pathogenesis of high-fat mediated non-alcoholic steatohepatitis (NASH). Thus, the role of CYP2E1 in high-fat mediated NASH development was evaluated.
Male wild type (WT) and Cyp2e1-null mice were fed a low-fat diet (LFD, 10% energy-derived) or a high-fat diet (HFD, 60% energy-derived) for 10weeks. Liver histology and tissue homogenates were examined for various parameters of oxidative stress and inflammation.
Liver histology showed that only WT mice fed a HFD developed NASH despite the presence of increased steatosis in both WT and Cyp2e1-null mice fed HFD. Markers of oxidative stress such as elevated CYP2E1 activity and protein amounts, lipid peroxidation, protein carbonylation, nitration, and glycation with increased phospho-JNK were all markedly elevated only in the livers of HFD-fed WT mice. Furthermore, while the levels of inflammation markers osteopontin and F4/80 were higher in HFD-fed WT mice, TNFα and MCP-1 levels were lower compared to the corresponding LFD-fed WT. Finally, only HFD-fed WT mice exhibited increased insulin resistance and impaired glucose tolerance.
These data suggest that CYP2E1 is critically important in NASH development by promoting oxidative/nitrosative stress, protein modifications, inflammation, and insulin resistance.

0 Bookmarks
 · 
183 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) is not a single disease entity, rather it describes a spectrum of liver conditions that range from fatty liver (steatosis) to more severe steatosis coupled with marked inflammation and fibrosis (non-alcoholic steatohepatitis (NASH)) through to severe liver disease such as cirrhosis and possibly hepatocellular carcinoma. Obesity, notably abdominal obesity, is a common risk factor for NAFLD. The pathogenesis from steatosis to NASH is poorly understood and the “two hit” model, as suggested nearly two decades ago, provides a feasible starting point for characterisation of underlying mechanisms. This review will examine the oxidative stress factors (‘triggers’) which have been implicated as a “second hit” in the development of primary NASH. It is would be reasonable to assume that multiple, rather than single, pro-oxidative intracellular and extracellular triggers act in conjunction promoting oxidative stress that drives the development of NASH. It is likely that the common denominator of these pro-oxidative triggers is mitochondrial dysfunction. Understanding the contribution of each of these ‘triggers’ is an essential step in starting to understand and elucidate the mechanisms responsible for progression from steatosis to NASH, thus enabling the development of therapeutic targeting to prevent NASH development and progression. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 03/2014; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herein we have characterized CYPs and antioxidant enzymes in a new steatotic rat model induced with a high fat diet (HFD) combined with a low dose of streptozotocin (STZ). This model was recently put forward in order to better replicate the NAFLD human pathology. HFD/STZ rats developed hyperglycemia, hypercholesterolemia and overt steatosis. The treatment also caused liver damage, but not lipid peroxidation, suggesting this damage was due to hepatic fat deposition and excess formation of toxic free fatty acids, rather than to oxidative stress. In the HFD/STZ group, a significant rise in total CYP content was found, in conjunction with increased activity and protein levels of CYP2E1 and CYP4A, the latter also up-regulated at the transcriptional level. A significant decrease of CYP2C11 was observed at the transcriptional and protein level, whereas CYP3A2 did not change in response to HFD/STZ treatment. In our experimental conditions, the activity of the HO-1 and NQO1 enzymes, whose genes are regulated by Nrf2, were not affected, and nor were the antioxidant enzymes SOD and CAT, confirming the lack of oxidative stress. Our HFD/STZ treatment, which established overt steatosis and changes in CYPs expression, but not oxidative stress, likely reflects an early stage of NAFLD.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 05/2014; · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although acetaminophen (APAP) is usually considered as a safe drug, this painkiller can lead to acute liver failure after overdoses. Moreover, there is evidence that the maximum recommended dosage can induce hepatic cytolysis in some individuals. Several predisposing factors appear to enhance the risk and severity of APAP-induced liver injury including chronic alcoholic liver disease and nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions linked to obesity. In contrast, obesity by itself does not seem to be associated with a higher risk of APAP-induced liver injury. Since 1987, seven studies dealt with APAP-induced hepatotoxicity in rodent models of NAFLD and five of them found that this liver disease was associated with higher APAP toxicity. Unfortunately, these studies did not unequivocally established the mechanism(s) whereby NAFLD could favor APAP hepatotoxicity, although some investigations suggested that pre-existent induction of hepatic cytochrome P450 2E1 (CYP2E1) could play a significant role by favoring the generation of N-acetyl-p-benzoquinone imine (NAPQI), the toxic metabolite of APAP. Moreover, pre-existent mitochondrial dysfunction associated to NAFLD could also be involved. In contrast, some investigations suggested that factors that could reduce the risk and severity of APAP hepatotoxicity in obesity and NAFLD include higher hepatic APAP glucuronidation, reduced CYP3A4 activity and increased volume of body distribution. Thus, the occurrence and the outcome of APAP-induced liver injury in an obese individual with NAFLD might depend of a delicate balance between metabolic factors that can be protective and others that favour large hepatic levels of NAPQI. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 02/2014; · 3.87 Impact Factor