Article

CO2, N2 gas sorption and permeation behavior of chitosan membrane

Korea Atomic Energy Research Institute P.O.Box 105 305-606 Taejon Korea; Toyama University Department of Chemical and Biochemical Engineering 930 Toyama Japan
Korean Journal of Chemical Engineering (Impact Factor: 1.06). 02/1998; 15(2):223-226. DOI: 10.1007/BF02707076

ABSTRACT The sorption equilibria for CO2 and N2 in dry chitosan membrane at 20 and 30 ‡C were measured by a pressure decay method. The steady-state permeation rates for
CO2 and N2 in dry and wet (swollen with water vapor) chitosan membranes at 20 and 30 ‡C were measured by a variable volume method. The
sorption equilibrium for N2 obeyed Henry’s law, whereas that for CO2 was described apparently by a dual-mode sorption model. This non-linear sorption equilibrium for CO2 could be interpreted by the interaction of sorbed CO2 with the chitosan matrix expressed as a reversible reaction. The logarithm of the mean permeability coefficient for CO2 in dry chitosan membrane increased linearly with upstream gas pressure. A linear increase of the logarithmic mean permeability
coefficient for CO2 with the pressure could be interpreted in terms of a modified free-volume model. The mean per-meability coefficient for N2 in dry chitosan membrane only slightly increased with upstream gas pressure. The per-meabilities for CO2 and N2 in wet chitosan membrane increased by 15 to 17 times and 11 to 15 times, respectively, as compared to those in the dry membrane.

0 Bookmarks
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The influence of water vapour conditions on mass transport and barrier properties of chitosan based films and coatings were studied in relation to surface and structural properties. Water contact angles, material swelling, polymer degradation temperature, barrier properties (PO2, PCO2, WVP) and aroma diffusion coefficients were determined. The solvent nature and the presence of carvacrol influenced the surface and structural properties and then the barrier performance of activated chitosan films. Increasing RH from 0% to 100% led to a significant increase in material swelling. The plasticization effect of water was more pronounced at high humid environment, while at low RH the matrix plasticization was induced by carvacrol. The deposit of a thin chitosan layer on polyethylene decreased PO2 and PCO2 both in dry and humid conditions. The carvacrol release from the chitosan matrix was strongly influenced by RH. A temperature increase from 4 to 37°C also had an impact on carvacrol diffusivity but to a lesser extent than RH.
    Food Chemistry 02/2014; 144C:9-17. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI) blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf) ultrafiltration membranes as support layer for the separation of CO(2)/N(2) mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO(2) gas is 3.6 × 10-7 cm3 cm-2 s-1 cmHg-1 and the corresponding separation factor for CO(2) and N(2) gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10-4 cm3 cm-2 s-1 cmHg-1 for CO(2) gas and a separation factor of 325 for CO(2)/N(2) mixtures at the same feed pressure. This indicates that the CO(2) separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO(2)/N(2) mixture separation.
    International Journal of Molecular Sciences 01/2013; 14(2):3621-38. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For most polymeric membranes, the gas permeability coefficient (P) is often interpreted as the product of diffusivity (D) and solubility (S) of a penetrant gas in the polymer (P=D S). The basic assumption is that molecular diffusion is primarily responsible for mass transport in the membrane permeation process. However, for some open structure membranes, such as poly(1-trimethylsilyl-1-propyne) [PTMSP] or poly(dimethylsiloxane) [PDMS], the high permeabilities of some gases yield much higher diffusivities when calculated from the above relationship (P=D S) than when calculated by using the direct kinetic measurement of diffusivity. It is hypothesized that this discrepancy is due to the convective transport of gas molecules through such open structured polymers. In most cases, the convective contribution to mass transport through membranes is negligible. However, for polymer membranes with high free volume, such as PTMSP, whose free volume fraction is 20 to 25%, the convective term may dominate the permeation flux. In this study, a non-equilibrium thermodynamic formalism is employed to properly treat the diffusion term and convective term that constitute the Nernst-Planck equation. The current analysis indicates that the total permeation flux, which consists of a diffusion term and a convective term, agrees well with the experimental data for several permeation systems: pure components propane and n-butane/PTMSP, pure gas hydrogen/PTMSP, and mixed gas hydrogen/PTMSP. Also, the permeation systems of a nonporous rubbery membrane, PDMS, and eight organophosphorus compounds were included in the study. It is recommended that the proposed model be validated by using other polymers with high free volumes and high permeabilities of gases and vapors, such as poly(1-trimethylgermyl-1-propyne) [PTMGeP] and poly(4-methyl-2-pentyne) [PMP].
    Korean Journal of Chemical Engineering 01/2004; 21(2):442-453. · 1.06 Impact Factor