CO2, N2 gas sorption and permeation behavior of chitosan membrane

Toyama University Department of Chemical and Biochemical Engineering 930 Toyama Japan
Korean Journal of Chemical Engineering (Impact Factor: 1.24). 02/1998; 15(2):223-226. DOI: 10.1007/BF02707076

ABSTRACT The sorption equilibria for CO2 and N2 in dry chitosan membrane at 20 and 30 ‡C were measured by a pressure decay method. The steady-state permeation rates for
CO2 and N2 in dry and wet (swollen with water vapor) chitosan membranes at 20 and 30 ‡C were measured by a variable volume method. The
sorption equilibrium for N2 obeyed Henry’s law, whereas that for CO2 was described apparently by a dual-mode sorption model. This non-linear sorption equilibrium for CO2 could be interpreted by the interaction of sorbed CO2 with the chitosan matrix expressed as a reversible reaction. The logarithm of the mean permeability coefficient for CO2 in dry chitosan membrane increased linearly with upstream gas pressure. A linear increase of the logarithmic mean permeability
coefficient for CO2 with the pressure could be interpreted in terms of a modified free-volume model. The mean per-meability coefficient for N2 in dry chitosan membrane only slightly increased with upstream gas pressure. The per-meabilities for CO2 and N2 in wet chitosan membrane increased by 15 to 17 times and 11 to 15 times, respectively, as compared to those in the dry membrane.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The sorption and permeation properties of CO2 and CH4 for synthesized brominated polysulfone, BPSf (bromobisphenol A polysulfone) were measured, and compared with the values for PSf (bisphenol A polysulfone), MPSf (bisphenol A methylated polysulfone) and TMSPSf (bisphenol A trimethylsilylated polysulfone) to investigate the structure-property relationships. Especially, the effect of polarity of substituents on the transport properties was studied. The effect of operating pressure on the permeation properties of polysulfones was examined. The permeation properties for a mixture of CO2 and CH4 were also measured, and these results were compared with those obtained from the experiments of pure gases. The sorbed concentrations and permeability coefficients are well fitted to the dual mode model. The permeability coefficients of each gas of a binary mixture are less than those of pure gases, and the extent of reduction in permeability coefficient is larger for less permeable polymer. The ideal separation factor for four polysulfones increases in the following order: TMSPSf< PSf< BPSf< MPSf. The ideal separation factor for BPSf is higher than other polysulfones having similar permeability coefficients of CO2 with BPSf. It can be explained that the strong polarity of bromine in BPSf increases cohesive energy density of polymer, and reduces the chain packing-inhibiting ability. The ranking of permeability coefficient correlates well with fractional free volume. The variation of d-spacing is not consistent with the permeability coefficient.
    Korean Journal of Chemical Engineering 05/1999; 16(3). DOI:10.1007/BF02707123 · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For most polymeric membranes, the gas permeability coefficient (P) is often interpreted as the product of diffusivity (D) and solubility (S) of a penetrant gas in the polymer (P=D S). The basic assumption is that molecular diffusion is primarily responsible for mass transport in the membrane permeation process. However, for some open structure membranes, such as poly(1-trimethylsilyl-1-propyne) [PTMSP] or poly(dimethylsiloxane) [PDMS], the high permeabilities of some gases yield much higher diffusivities when calculated from the above relationship (P=D S) than when calculated by using the direct kinetic measurement of diffusivity. It is hypothesized that this discrepancy is due to the convective transport of gas molecules through such open structured polymers. In most cases, the convective contribution to mass transport through membranes is negligible. However, for polymer membranes with high free volume, such as PTMSP, whose free volume fraction is 20 to 25%, the convective term may dominate the permeation flux. In this study, a non-equilibrium thermodynamic formalism is employed to properly treat the diffusion term and convective term that constitute the Nernst-Planck equation. The current analysis indicates that the total permeation flux, which consists of a diffusion term and a convective term, agrees well with the experimental data for several permeation systems: pure components propane and n-butane/PTMSP, pure gas hydrogen/PTMSP, and mixed gas hydrogen/PTMSP. Also, the permeation systems of a nonporous rubbery membrane, PDMS, and eight organophosphorus compounds were included in the study. It is recommended that the proposed model be validated by using other polymers with high free volumes and high permeabilities of gases and vapors, such as poly(1-trimethylgermyl-1-propyne) [PTMGeP] and poly(4-methyl-2-pentyne) [PMP].
    Korean Journal of Chemical Engineering 01/2004; 21(2):442-453. DOI:10.1007/BF02705434 · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre-exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007
    Journal of Polymer Science Part B Polymer Physics 09/2007; 45(18):2620 - 2631. DOI:10.1002/polb.21236 · 2.55 Impact Factor
Show more