Chapter

A Model-Driven Heuristic Approach for Detecting Multidimensional Facts in Relational Data Sources

Lucentia Research Group Dept. of Software and Computing Systems, University of Alicante, Spain
DOI: 10.1007/978-3-642-15105-7_2
Source: DBLP

ABSTRACT Facts are multidimensional concepts of primary interests for knowledge workers because they are related to events occurring
dynamically in an organization. Normally, these concepts are modeled in operational data sources as tables. Thus, one of the
main steps in conceptual design of a data warehouse is to detect the tables that model facts. However, this task may require
a high level of expertise in the application domain, and is often tedious and time-consuming for designers. To overcome these
problems, a comprehensive model-driven approach is presented in this paper to support designers in: (1) obtaining a CWM model
of business-related relational tables, (2) determining which elements of this model can be considered as facts, and (3) deriving
their counterparts in a multidimensional schema. Several heuristics –based on structural information derived from data sources–
have been defined to this end and included in a set of Query/View/Transformation model transformations.

Download full-text

Full-text

Available from: Stefano Rizzi, Aug 14, 2015
1 Follower
 · 
168 Views
  • Source
    • "Relational data driven approaches deduce multidimensional structures (facts and dimensions) from conceptual (Phipps and Davis, 2002) and/or logical models (Carme et al., 2010; Jensen et al., 2004). In particular some works investigate automatic discovering facts using some heuristics (Carme et al., 2010). About dimensions some works propose using logical database metadata such as foreign keys (Jensen et al., 2004) or some heuristics. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Data warehouses (DW) and OLAP systems are business intelligence technologies allowing the on-line analysis of huge volume of data according to users' needs. The success of DW projects essentially depends on the design phase where functional requirements meet data sources (mixed design methodology) (Phipps and Davis, 2002). However, when dealing with complex applications existing design methodologies seem inefficient since decision-makers define functional requirements that cannot be deduced from data sources (data driven approach) and/or they have not sufficient application domain knowledge (user driven approach) (Sautot et al., 2014b). Therefore, in this paper we propose a new mixed refinement design methodology where the classical data-driven approach is enhanced with data mining to create new dimensions hierarchies. A tool implementing our approach is also presented to validate our theoretical proposal.
    17th International Conference on Enterprise Information Systems (ICEIS), Barcelona, Spain; 04/2015
  • Source
    • "Classification Hiérarchique [3] [10] Notre proposition Autre [4, 12] [8] TAB. 1 – Récapulatif de l'état de l'art sur la construction de hiérarchies des heuristiques [2]. Concernant les dimensions, d'autres travaux proposent d'utiliser les métadonnées logiques d'une base de données comme par exemple les clés étrangères [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Les entrepôts de données (DW) et les systèmes OLAP sont des technologies d’analyse en ligne pour de grands volumes de données, basés sur les besoins des utilisateurs. Leur succès dépend essentiellement de la phase de conception où les exigences fonctionnelles sont confrontées aux sources de données (méthodologie de conception mixte). Cependant, les méthodes de conception existantes semblent parfois inefficaces, lorsque les décideurs définissent des exigences fonctionnelles qui ne peuvent être déduites à partir des sources de données (approche centrée sur les données), ou lorsque le décideur n’a pas intégré tous ces besoins durant la phase de conception (approche centrée sur l’utilisateur). Cet article propose une nouvelle méthodologie mixte d’enrichissement de schémas en constellation, où l’approche classique de conception est améliorée grâce à la fouille de données dans le but de créer de nouvelles hiérarchies au sein d’une dimension. Un prototype associé est également présenté.
    EDA 2015, Bruxelles; 04/2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a semi-automatic SOLAP approach specially dedicated to the analysis of spatial model simulation results. We illustrate it on demographic and economic data of rural municipalities resulting from a model developed in the context of the European project PRIMA.
    Computational Science and Its Applications - ICCSA 2011 - International Conference, Santander, Spain, June 20-23, 2011. Proceedings, Part I; 01/2011
Show more