Article

Prediction of the Partition Coefficient for Acetic Acid in a Two-Phase System Soybean Oil-Water

Journal of Oil & Fat Industries (Impact Factor: 1.62). 06/2007; 84(7):669-674. DOI: 10.1007/s11746-007-1079-8

ABSTRACT An analytical approach for the prediction of the partition coefficient for acetic acid between soybean oil and water, dependent
on temperature and composition, has been proposed. The original and three modified UNIFAC models as well as the UNIQUAC model
were used to represent the liquid–liquid equilibrium data in the ternary system. To calculate the density of the water and
oil phase the COSTALD method was applied. The proposed approach for the prediction of the partition coefficient for acetic
acid fit the experimental data well when the UNIQUAC model was used. The results of the application of the proposed approach
to the experimental data for acetic acid partition coefficient taken from the literature were also presented and discussed.

1 Follower
 · 
323 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present work, the kinetics, mass transfer and heat transfer of soybean oil epoxidation with H2O2 have been studied in a fed and pulse-fed-batch reactor. The reaction has been performed with peroxyformic acid (PFA), generated in situ, by reacting concentrated hydrogen peroxide (60wt.%) with formic acid (FA), in the presence of sulphuric or phosphoric acid as catalysts. The kinetic study also considers two important aspects occurring simultaneously with the epoxidation reaction, namely: the degradation resulting from the opening of the oxirane rings, and the hydrogen peroxide decomposition. Epoxidation is a highly exothermic reaction and the evolution of the temperature in the reactor over a period of time is strongly dependent on the amounts and way in which a mixture of H2O2 and formic acid is added to the mixture of oil and catalyst. In this paper, a biphasic kinetic model has been developed considering all of the occurring reactions in each phase, the partition of reagents and products between the phases and the evolution of any involved chemical specie along the time. Different kinetic runs have been successfully simulated after the evaluation, by mathematical regression analysis or by independent means, of all the kinetic and thermodynamic parameters of the model. The heat transfer properties of the used reactor have been determined following different approaches. In addition, the evolution of the temperature of the reacting mixture during the time has also been simulated with the developed mathematical model.
    Chemical Engineering Journal 09/2011; 173(1):198-209. DOI:10.1016/j.cej.2011.05.018 · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Partition coefficients for the carboxylic acids (A) acetic and formic acids between oil and water were measured, correlated, and predicted. The experiments were conducted by equilibrating the systems, soybean oil (SO)–H2O–A and fatty acid methyl ester (FAME)–H2O–A, at 40 °C employing different compositions. The partition coefficients were correlated using the UNIQUAC model and, also, predicted by calculating the activity coefficients of the carboxylic acid in the two phases using a group contribution method, the UNIFAC equation. Agreement of experimental partition coefficients values with those estimated by UNIFAC are fair. Other experimental data from literature were also correlated and are discussed.
    Journal of Oil & Fat Industries 06/2009; 86(6):513-519. DOI:10.1007/s11746-009-1386-3 · 1.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of the relevant process variables on the reaction of soybean oil fatty acid methyl esters with performic acid (PFA) generated in situ using concentrated hydrogen peroxide (up to 60 wt%), to produce an epoxidized product in high yield, is studied in detail. The degree of mixing, temperature, concentration and molar ratios of reactants and/or use of a diluent were considered.Temperature increases are significantly detrimental for achieving high oxirane numbers, as the selectivity to ring-opening reactions increases. Higher concentrations of either formic acid or H2O2 are also harmful (particularly, the carboxylic acid) but much less than temperature.A proposed alternative process, employing moderate temperature (up to 40 °C) and concentrated H2O2, compares favourably with the conventional one; higher conversion combined with high epoxide productivity and selectivity are attainable.Using economically sound reactants molar ratios, under well-mixed regimes, in which the immiscible polar and organic phases are well dispersed, the epoxidation process can be adequately described using an (equilibrated) two-phase reaction model. The model accounts for both the reversible peracid formation (in the aqueous phase) and the epoxidation reaction proper, together with the attacks on the epoxide ring by formic acid and performic acid (in the organic phase).
    Chemical Engineering Journal 11/2008; 144(3-144):466-475. DOI:10.1016/j.cej.2008.07.016 · 4.06 Impact Factor