Jet Driven Turbulence?

DOI: 10.1007/978-3-642-00576-3_50


Molecular clouds, the birth sites of stars, are permeated by supersonic gas motions. Here, we summarize our results from numerical
simulations on individual jets interacting with their ambient medium. These single jet simulations show that the volume filling
factor of supersonic turbulence excited by jets is very low. In general, supersonic motions, if driven at small scales, do
not propagate far from their source and are damped quickly. Therefore, it is unlikely that the supersonic motions observed
in molecular clouds are maintained by jets launched from protostellar objects. Our preliminary results from three dimensional
simulations of collapsing cloud cores with a self-consistent description of mechanical feedback around protostellar objects
point towards the same results.

Download full-text


Available from: Susanne Horn,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) In this review we focus on the observations and theory of the formation of early disks and outflows, and their connections with the first phases of planet formation. Large rotationally supported circumstellar disks, although common around more evolved young stellar objects, are rarely detected during the earliest, "Class 0" phase; however, a few excellent candidates have been discovered recently around both low and high mass protostars. In this early phase, prominent outflows are ubiquitously observed; they are expected to be associated with at least small magnetized disks. Disk formation - once thought to be a simple consequence of the conservation of angular momentum during hydrodynamic core collapse - is far more subtle in magnetized gas. In this case, the rotation can be strongly magnetically braked. Indeed, both analytic arguments and numerical simulations have shown that disk formation is suppressed in the strict ideal magnetohydrodynamic (MHD) limit for the observed level of core magnetization. We review what is known about this "magnetic braking catastrophe", possible ways to resolve it, and the current status of early disk observations. Outflows are also intimately linked to disk formation; they are a natural product of magnetic fields and rotation and are important signposts of star formation. We review new developments on early outflow generation since PPV. The properties of early disks and outflows are a key component of planet formation in its early stages and we review these major connections.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present synthetic H i and CO observations of a numerical simulation of decaying turbulence in the thermally bistable neutral medium. We produce maps of H i, CO-free molecular gas, and CO, using a simple radiative transfer algorithm, obtaining the following results. (i) The spatial distribution of the gas consists of a layered structure of CO molecular gas being surrounded by CO-free molecular gas, then cold H i, and this in turn being surrounded by warm H i. (ii) The atomic gas is generally flowing towards the molecular gas, and this motion may be reflected in the frequently observed bimodal shape of the H i profiles. (iii) We test the suggestion of using the second derivative of the brightness temperature H i profile to trace H i self-absorption (HISA) and molecular gas, finding significant limitations. On a scale of several parsec, some agreement is obtained between this technique and actual HISA, as well as a correlation between HISA and the molecular gas column density. This correlation, however, quickly deteriorates towards sub-parsec scales. (iv) The column-density probability density functions (PDFs) recovered from the H i line profiles have a cut-off at column densities where the gas becomes optically thick, thus missing the contribution from the HISA-producing gas. (v) The power-law tail typical of gravitational contraction is only observed in the molecular gas and, before the power-law tail develops in the total gas density PDF, no CO is yet present, reinforcing the notion that gravitational contraction is needed to produce this component.
    Monthly Notices of the Royal Astronomical Society 03/2014; 452(2). DOI:10.1093/mnras/stv1153 · 5.11 Impact Factor