Article

Randomized Study of Two Chemotherapy Regimens for Treatment of Low-Grade Glioma in Young Children: A Report From the Children's Oncology Group

Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
Journal of Clinical Oncology (Impact Factor: 17.88). 06/2012; 30(21):2641-7. DOI: 10.1200/JCO.2011.36.6054
Source: PubMed

ABSTRACT PURPOSE Surgery is curative therapy for pediatric low-grade gliomas (LGGs) in areas of the brain amenable to complete resection. However, LGGs located in areas where complete resection is not possible can threaten both function and life. The purpose of this study was to compare two chemotherapy regimens for LGGs in children younger than age 10 years for whom radiotherapy was felt by the practitioner to pose a high risk of neurodevelopmental injury. PATIENTS AND METHODS Previously untreated children younger than age 10 years with progressive or residual LGGs were eligible. Children were randomly assigned to receive carboplatin and vincristine (CV) or thioguanine, procarbazine, lomustine, and vincristine (TPCV). Children with neurofibromatosis are reported separately. Results Of 274 randomly assigned patients who met eligibility requirements, 137 received CV and 137 received TPCV. The 5-year event-free survival (EFS) and overall survival (OS) rates for all eligible patients were 45% ± 3.2% and 86% ± 2.2%, respectively. The 5-year EFS rates were 39% ± 4% for CV and 52% ± 5% for TPCV (stratified log-rank test P = .10; cure model analysis P = .007). On multivariate analysis, factors independently predictive of worse EFS and OS were younger age and tumor size greater than 3 cm(2). Tumor location in the thalamus was also associated with poor OS. CONCLUSION The difference in EFS between the regimens did not reach significance on the basis of the stratified log-rank test. The 5-year EFS was higher for TPCV on the basis of the cure model analysis. Differences in toxicity may influence physician choice of regimens.

0 Followers
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Ganglioglioma (GG) and pilocytic astrocytoma (PA) represent the most frequent low-grade gliomas (LGG) occurring in paediatric age. LGGs not amenable of complete resection (CR) represent a challenging subgroup where traditional treatments often fail. Activation of the MAP Kinase (MAPK) pathway caused by the BRAFV600E mutation or the KIAA1549-BRAF fusion has been reported in pediatric GG and PA, respectively.Case presentationWe report on a case of BRAFV600E mutated cervicomedullary GG treated with standard chemotherapy and surgery. After multiple relapse, BRAF status was analyzed by immunohistochemistry and sequencing showing a BRAFV600E mutation. Treatment with Vemurafenib as single agent was started. For the first time, a radiological and clinical response was obtained after 3 months of treatment and sustained after 6 months.Conclusion Our experience underline the importance of understanding the driver molecular alterations of LGG and suggests a role for Vemurafenib in the treatment of pediatric GG not amenable of complete surgical resection.
    Journal of Translational Medicine 12/2014; 12(1):356. DOI:10.1186/s12967-014-0356-1 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noonan syndrome (NS; MIM 163950) is an autosomal dominant syndrome which is clinically diagnosed by the distinct facial features, short stature, cardiac anomalies and developmental delay. About 50% of cases are associated with gain of function mutations in PTPN11 gene which leads to activation of the RAS/mitogen-activated protein kinase signaling pathway. This is known to have a role in tumorigenesis. Despite this, only limited reports of solid tumors (Fryssira H, Leventopoulos G, Psoni S, et al. Tumor development in three patients with Noonan syndrome. Eur J Pediatr 2008;167:1025-1031; Schuettpelz LG, McDonald S, Whitesell K et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer 2009;53:1147-1149; Sherman CB, Ali-Nazir A, Gonzales-Gomez I, et al. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome. J Pediatr Hematol Oncol 2009;31:61-64; Sanford RA, Bowman R, Tomita T, et al. A 16 year old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurosurg 1999;30:47-52) and no prior reports of optic gliomas have been described in patients with NS. We present here a patient with NS with a PTPN11 mutation and an optic pathway pilomyxoid astrocytoma. Pediatr Blood Cancer © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Pediatric Blood & Cancer 01/2015; DOI:10.1002/pbc.25382 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric brainstem gliomas include low-grade focal brainstem gliomas (FBSG) and high-grade diffuse intrinsic pontine gliomas (DIPG). These tumors share a crucial and eloquent area of the brain as their location, which carries common challenges for treatment. Otherwise, though, these two diseases are very different in terms of presentation, biology, treatment, and prognosis. FBSG usually present with greater than 3 months of symptoms, while DIPG are usually diagnosed within 3 months of symptom onset. Surgery remains the preferred initial treatment for FBSG, with chemotherapy used for persistent, recurrent, or inoperable disease; conversely, radiation is the only known effective treatment for DIPG. Recent developments in biological understanding of both tumors have led to new treatment possibilities. In FBSG, two genetic changes related to BRAF characterize the majority of tumors, and key differences in their biological effects are informing strategies for targeted chemotherapy use. In DIPG, widespread histone H3 and ACVR1 mutations have led to new hope for effective targeted treatments. FBSG has an excellent prognosis, while the long-term survival rate of DIPG tragically remains near zero. In this review, we cover the epidemiology, biology, presentation, imaging characteristics, multimodality treatment, and prognosis of FBSG and DIPG, with a focus on recent biological discoveries.
    Current Oncology Reports 03/2015; 17(3):436. DOI:10.1007/s11912-014-0436-7 · 2.87 Impact Factor