Elevated urinary levels of kidney injury molecule-1 among Chinese factory workers exposed to trichloroethylene

Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
Carcinogenesis (Impact Factor: 5.33). 06/2012; 33(8):1538-41. DOI: 10.1093/carcin/bgs191
Source: PubMed


Epidemiological studies suggest that trichloroethylene (TCE) exposure may be associated with renal cancer. The biological mechanisms involved are not exactly known although nephrotoxicity is believed to play a role. Studies on TCE nephrotoxicity among humans, however, have been largely inconsistent. We studied kidney toxicity in Chinese factory workers exposed to TCE using novel sensitive nephrotoxicity markers. Eighty healthy workers exposed to TCE and 45 comparable unexposed controls were included in the present analyses. Personal TCE exposure measurements were taken over a 2-week period before urine collection. Ninety-six percent of workers were exposed to TCE below the current US Occupational Safety and Health Administration permissible exposure limit (100 ppm 8h TWA), with a mean (SD) of 22.2 (35.9) ppm. Kidney injury molecule-1 (KIM-1) and Pi-glutathione S transferase (GST) alpha were elevated among the exposed subjects as compared with the unexposed controls with a strong exposure-response association between individual estimates of TCE exposure and KIM-1 (P < 0.0001). This is the first report to use a set of sensitive nephrotoxicity markers to study the possible effects of TCE on the kidneys. The findings suggest that at relatively low occupational exposure levels a toxic effect on the kidneys can be observed. This finding supports the biological plausibility of linking TCE exposure and renal cancer.


Available from: Luoping Zhang, Apr 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives Inconsistent epidemiological findings, debate over interpretation, and extrapolation of findings from animal studies to humans have produced uncertainty surrounding the carcinogenicity of trichloroethylene (TCE) exposure in occupational settings. We updated meta-analyses of published case–control and cohort studies exploring occupational TCE exposure and kidney cancer risk, incorporating new analytical results from three recently published cohort studies and a case–control study. Methods PubMed MEDLINE was searched for studies published from 1950 to 2011 assessing occupational exposure to chlorinated solvents, degreasers or TCE. All cohort (N=15) and case–control (N=13) studies included in analyses were stratified by assessment of occupational exposure to TCE specifically and to any chlorinated solvent. Results Significantly elevated summary estimates were observed for cohort studies (relative risk (RR) 1.26, 95% CI 1.02 to 1.56; p heterogeneity=0.65), case–control studies (OR 1.35, 95% CI 1.17 to 1.57; p heterogeneity=0.41), and cohort and case–control studies combined (RR 1.32, 95% CI 1.17 to 1.50, p heterogeneity=0.63) that specifically assessed TCE exposure after excluding outlier studies that contributed to heterogeneity. Non-significantly elevated summary estimates were generally observed for studies of workers exposed to chlorinated solvents but who were not assessed for TCE specifically. Conclusions Regardless of study design, significant and stronger estimates were only observed in studies specifically assessing occupational exposure to TCE. Estimates were lower in studies assessing occupational exposure to chlorinated solvents. This updated meta-analysis supports an association between occupational TCE exposure and kidney cancer and provides evidence that exposure misclassification may weaken estimates assessing exposure to the broader class of chlorinated solvents.
    Occupational and Environmental Medicine 11/2012; 69(12):858-867. DOI:10.1136/oemed-2012-100932 · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity.
    Toxicology and Applied Pharmacology 12/2012; 267(1). DOI:10.1016/j.taap.2012.12.002 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed a toxicological review of trichloroethylene (TCE) in September 2011, which was the result of an effort spanning > 20 years. Objectives: We summarized the key findings and scientific issues regarding the human health effects of TCE in the U.S. EPA’s toxicological review. Methods: In this assessment we synthesized and characterized thousands of epidemiologic, experimental animal, and mechanistic studies, and addressed several key scientific issues through modeling of TCE toxicokinetics, meta-analyses of epidemiologic studies, and analyses of mechanistic data. Discussion: Toxicokinetic modeling aided in characterizing the toxicological role of the complex metabolism and multiple metabolites of TCE. Meta-analyses of the epidemiologic data strongly supported the conclusions that TCE causes kidney cancer in humans and that TCE may also cause liver cancer and non-Hodgkin lymphoma. Mechanistic analyses support a key role for mutagenicity in TCE-induced kidney carcinogenicity. Recent evidence from studies in both humans and experimental animals point to the involvement of TCE exposure in autoimmune disease and hypersensitivity. Recent avian and in vitro mechanistic studies provided biological plausibility that TCE plays a role in developmental cardiac toxicity, the subject of substantial debate due to mixed results from epidemiologic and rodent studies. Conclusions: TCE is carcinogenic to humans by all routes of exposure and poses a potential human health hazard for noncancer toxicity to the central nervous system, kidney, liver, immune system, male reproductive system, and the developing embryo/fetus.
    Environmental Health Perspectives 12/2012; 122(4). DOI:10.1289/ehp.1205879 · 7.98 Impact Factor
Show more