The mammalian microRNA response to bacterial infections.

Institute for Molecular Infection Biology (IMIB) and Research Centre for Infection Diseases (ZINF), University of Würzburg; Würzburg, Germany.
RNA biology (Impact Factor: 5.38). 06/2012; 9(6):742-50. DOI: 10.4161/rna.20018
Source: PubMed

ABSTRACT MicroRNAs are small RNAs that post-transcriptionally regulate eukaryotic gene expression. In addition to their involvement in a wide range of physiological and pathological processes, including viral infections, microRNAs are increasingly implicated in the eukaryotic response to bacterial pathogens. Recent studies have characterized changes in host microRNA expression following infection with exclusively extracellular (Helicobacter pylori) or intracellular (Salmonella enterica) Gram-negative bacteria, as well as in the response to Gram-positive (Listeria monocytogenes) and other pathogens (Mycobacterium and Francisella species). In this review, we discuss the emerging roles of microRNAs in mammalian host signaling and defense against bacterial pathogens.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defense during infection is critical to understanding the etiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.
    Frontiers in Immunology 01/2014; 5:611.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IFN-γ-activated macrophages play an essential role in controlling intracellular pathogens; however, macrophages also serve as the cellular home for the intracellular pathogen Mycobacterium tuberculosis. Based on previous evidence that M. tuberculosis can modulate host microRNA (miRNA) expression, we examined the miRNA expression profile of M. tuberculosis-infected primary human macrophages. We identified 31 differentially expressed miRNAs in primary human macrophages during M. tuberculosis infection by NanoString and confirmed our findings by quantitative real-time RT-PCR. In addition, we determined a role for two miRNAs upregulated upon M. tuberculosis infection, miR-132 and miR-26a, as negative regulators of transcriptional coactivator p300, a component of the IFN-γ signaling cascade. Knockdown expression of miR-132 and miR-26a increased p300 protein levels and improved transcriptional, translational, and functional responses to IFN-γ in human macrophages. Collectively, these data validate p300 as a target of miR-132 and miR-26a, and demonstrate a mechanism by which M. tuberculosis can limit macrophage responses to IFN-γ by altering host miRNA expression.
    Journal of immunology (Baltimore, Md. : 1950). 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5'-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12-18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18-24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.
    PLoS ONE 10/2014; 9(10):e109525. · 3.53 Impact Factor