Shape evolution of gold nanoparticles

Journal of Nanoparticle Research (Impact Factor: 2.18). 02/2010; 12(2):655-661. DOI: 10.1007/s11051-009-9612-3

ABSTRACT The tetraoctylammonium bromide-stabilized gold nanoparticles have been successfully fabricated. The shape evolution of these
nanoparticles under different annealing temperatures has been investigated using high-resolution transmission electron microscopy.
After an annealing at 100°C for 30min, the average diameters of the gold nanoparticles change a little. However, the shapes
of gold nanoparticles change drastically, and facets appear in most nanoparticles. After an annealing at 200°C for 30min,
not only the size but also the shape changes a lot. After an annealing at 300°C for 30min, two or more gold nanoparticles
coalesce into bigger ones. In addition, because of the presence of Cu grid during the annealing, some gold particles become
the nucleation sites of Cu2O nanocubes, which possess a microstructure of gold-particle core/Cu2O shell. These Au/Cu2O heterostructure nanocubes can only be formed at a relatively high temperature (≥300°C). The results can provide some insights
on controlling the shapes of gold nanoparticles.

21 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have explored the room temperature response of metal nanoparticle decorated single-walled carbon nanotubes (NP-SWNTs) using a combination of electrical transport, optical spectroscopy, and electronic structure calculations. We have found that upon the electrochemical growth of Au NPs on SWNTs, there is a transfer of electron density from the SWNT to the NP species, and that adsorption of CO molecules on the NP surface is accompanied by transfer of electronic density back into the SWNT. Moreover, the electronic structure calculations indicate dramatic variations in the charge density at the NP-SWNT interface, which supports our previous observation that interfacial potential barriers dominate the electrical behavior of NP-SWNT systems.
    Nano Letters 02/2010; 10(3):958-63. DOI:10.1021/nl903888c · 13.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently designed advanced in-situ specimen holders for transmission electron microscopy (TEM) have been used in studies of gold nanoparticles. We report results of variable temperature TEM experiments in which structural transformations have been correlated with specimen temperature, allowing general trends to be identified. Transformation to a decahedral morphology for particles in the size range 5-12nm was observed for the majority of particles regardless of their initial structure. Following in-situ annealing, decahedra were found to be stable at room temperature, confirming this as the equilibrium morphology, in agreement with recently calculated phase diagrams. Other transitions at low temperature in addition to surface roughening have also been observed and correlated with the same nanoscale phase diagram. Investigations of gold particles at high temperature have revealed evidence for co-existing solid and liquid phases. Overall, these results are important in a more precise understanding of the structure and action of catalytic gold nanoparticles and in the experimental verification of theoretical calculations.
    Ultramicroscopy 04/2010; 110(5):506-16. DOI:10.1016/j.ultramic.2009.12.010 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure formation in gold nanoparticles 1.6–5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.
    Journal of Experimental and Theoretical Physics 02/2013; 116(2). DOI:10.1134/S106377611302009X · 0.88 Impact Factor
Show more


21 Reads
Available from