Article

A drain current model for Schottky-barrier CNT-FETs

Journal of Computational Electronics (Impact Factor: 1.01). 11/2006; 5(4):361-364. DOI: 10.1007/s10825-006-0022-9

ABSTRACT We present here a physics-based drain current model for Schottky-barrier carbon nanotube field-effect transistors. The model
captures a number of features exhibited by these transistors such as thermionic and tunnel emission, ambipolar conduction,
ballistic transport, multimode propagation and electrostatics dominated by the nanotube capacitance

0 Bookmarks
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Afin de permettre le développement de modèles manipulables par les concepteurs, il est nécessaire de pouvoir comprendre le fonctionnement des nanotubes, en particulier le transport des électrons et leurs propriétés électroniques. C'est dans ce contexte général que cette thèse s'intègre. Le travail a été mené sur quatre plans : • Développement de modèles permettant la description des phénomènes physiques importants au niveau des dispositifs, • Expertise sur le fonctionnement des nano-composants permettant de dégager les ordres de grandeurs pertinents pour les dispositifs, les contraintes, la pertinence de quelques procédés de fabrication (reproductibilité, taux de défauts), • Collection de caractéristiques mesurées et développement éventuel d'expériences spécifiques, • Expertise et conception des circuits innovatifs pour l'électronique numérique avec ces nano-composants. Mots clés — Modélisation compacte, transistor Schottky à nanotube de carbone, simulation circuit, cellule mémoire SRAM, effet tunnel, WKB.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new structure for carbon nanotube field effect transistors (CNTFETs) is proposed and its current-voltage characteristic is simulated. The terminals of the transistor channel which is a single-wall carbon nanotube (CNT) are contacted to the metal electrodes and form different type of contacts at the interfaces. The carbon nanotube end which will form the source is contacted to the metal intrinsically and the other end of the CNT which forms the drain is doped with potassium and then contacted to the metal. We name this kind of CNTFET Schottky-Ohmic CNTFET (SO-CNTFET). The coaxial geometry SO-CNTFET has been considered for simulation. The proposed device is modeled using a semi-classical approach based on the assumption of ballistic transport through the channel. The SO-CNTFET exhibits unipolar characteristics and lower off current than conventional Schottky barrier CNTFETs (SB-CNTFETs). This paper adds the SO-CNTFEt to the library of different types of CNTFETs for future ULSI designs and applications.
    Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on; 02/2008