Article

Life cycle assessment of integrated circuit packaging technologies

The International Journal of Life Cycle Assessment (Impact Factor: 3.09). 03/2011; 16(3):258-267. DOI: 10.1007/s11367-011-0260-3

ABSTRACT Background, aim and scope
Nanostructured polymer particles are produced to be used in ball grid array (BGA) and chip scale packaging (CSP). The technology could replace conventional BGA and CSP metal balls, and the hypothesis is that the shift could be eco-efficient as polymer core particles increase the reliability. For the first time, these particles are environmentally evaluated.

Materials and methods
The change in GWP100 and Eco-Indicator’99 (H) scores when replacing traditional component packaging, here quad flat pack to BGA/CSP, was explored both on component and printed circuit board assembly (PCBA) level. This was followed by comparisons between BGA packages using different types of metal-plated monodispersed polymer particle (MPP) balls and conventional balls, respectively.

Results and discussion
For BGAs, the silicon (Si) die dominates CO2e emissions, but for Eco-Indicator’99(H), solder balls are not negligible. Excluding the Si die and component assembly, the LFBGA-84 to WCSP-64 would reduce CO2e by about 98% and Eco-Indicator’99 (H) by about 90%. Overall, for BGA–256 using same size balls, gold-plated MPP technology decreases the Eco-Indicator’99(H) score by about 25% compared to Pb-based or Pb-free balls. Gold production dominated GWP100 and Eco-Indicator’99 (H) for the gold-plated MPP. Each microsystem is unique, and new environmental impact estimations must be done for the sub-structures of each electronic device. Screening process-sum life cycle assessment (LCA) gives similar understanding of impacts as resource productivity methods. Even though the metal mass per ball is greatly reduced, it is a weak indicator of environmental impacts which are driven by each material’s specific environmental characteristics.

Conclusions
The ball share of the BGA-256 GWP100 and Eco-Indicator’99 (H) score is small, and the BGA/CSP producers can marginally improve the environmental performance by focusing on the balls. On a comparable IC packaging basis, the introduction of WCSP packaging technology implies a significant environmental footprint reduction. On PCBA level, the contribution of BGA balls is negligible. Results for metal-plated MPP BGA balls suggest that gold usage is the key environmental performance indicator of interest.

Recommendations and perspectives
Even though WCSP clearly reduces the component level impacts, the PCBA (board) level impact could increase as the CSP miniaturisation is paralleled with more PWB layers. This effect should be included in further system expansions. For LCA, in general, update of all LCIA methods, which include ozone depletion, with the latest results for dinitrogen monoxide is needed.
Keywords Ball grid array – Chip scale package – Electronic device – Integrated circuit – Monodispersed polymer particle – Printed circuit board assembly – Screening LCA

8 Followers
 · 
611 Views
  • Source
    • "The present method is admittedly rather defensive and let the designers do their technical/performance oriented work without ―hindrance‖ of extra ecoenvironmental requirements beyond mandatory laws and regulations. In fact natural technical development such as miniaturisation often automatically leads to eco-environmental improvements, depending on the product at hand, without deliberate ecoenvironmental considerations [20]. Moreover, the Information Communication Technology (ICT) industry could occasionally benefit from ecoenvironmental measures which are based on the performance (capacity) of the product (system) as the system level efficiency has increased rapidly over the years [27],[28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In product development in the industry, it is important to estimate the environmental impact of each product in a logical and applicable way. However, the quantity of requirements can act as a barrier to introducing eco-design. Few methods have been presented that clearly describes how eco-design can really become a part of the traditional product development process. Several existing eco-design methods do not seem to be intended for rapid product development process where the eco-design is not the main objective. Here an approach for rapid introduction of eco-design of electronics in the product development process of any company is presented. The cost-effective method makes use of seven eco-metrics and rapid LCA giving quantified results which are easily understood by designers. The proposed method captures the essence of eco-design of electronics in a cost-effective manner with enough precision for use as designer information. The actual implementation and verification of eco-design changes are solved and moreover the proposed eco-design method does not require specific customization prior to use. The presented method is successfully demonstrated for the development of a mobile phone.
    Going Green CARE Innovation, Vienna, Austria; 11/2014
  • Source
    • "The present method is admittedly rather defensive and let the designers do their technical/performance oriented work without ―hindrance‖ of extra eco-environmental requirements beyond mandatory laws and regulations. In fact natural technical development such as miniaturisation often automatically leads to eco-environmental improvements, depending on the product at hand, without deliberate eco-environmental considerations [20]. Moreover, the Information Communication Technology (ICT) industry could occasionally benefit from eco-environmental measures which are based on the performance (capacity) of the product (system) as the system level efficiency has increased rapidly over the years [27],[28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In product development in the industry, it is important to estimate the environmental impact of each product in a logical and applicable way. However, the quantity of requirements can act as a barrier to introducing eco-design. Few methods have been presented that clearly describes how eco-design can really become a part of the traditional product development process. Several existing eco-design methods do not seem to be intended for rapid product development process where the eco-design is not the main objective. Here an approach for rapid introduction of eco-design of electronics in the product development process of any company is presented. The cost-effective method makes use of seven eco-metrics and rapid LCA giving quantified results which are easily understood by designers. The proposed method captures the essence of eco-design of electronics in a cost-effective manner with enough precision for use as designer information. The actual implementation and verification of eco-design changes are solved and moreover the proposed eco-design method does not require specific customization prior to use. The presented method is successfully demonstrated for the development of a mobile phone.
  • Source
    • "It can cause crack initiation and propagation in the solders and eventually lead to functional failure of entire packaging structure [5]. Over the past decades, lots of researchers have focused on improving the reliability of lead-free solders which suffer from a joint effect of load, heat, and electricity during their lifecycle [6–11]. The mechanical properties of the solders, such as mechanical fatigues, thermal fatigues, shock, and creep deformations, have raised many concerns [6–9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.
    07/2014; 2014:807693. DOI:10.1155/2014/807693
Show more

Full-text

Download
188 Downloads
Available from
May 27, 2014
Available from