Article

Gender differences in associations of glutamate decarboxylase 1 gene (GAD1) variants with panic disorder.

Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e37651. DOI: 10.1371/journal.pone.0037651
Source: PubMed

ABSTRACT Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females.
Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score.
The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.

1 Follower
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The purpose of this study was to address the affects of mood modifying drugs on the transcriptome, in a tissue culture model, using qPCR arrays as a cost effective approach to identifying regulatory networks and pathways that might coordinate the cell response to a specific drug. Methods: We addressed the gene expression profile of 90 plus genes associated with human mood disorders using the StellARray™ qPCR gene expression system in the human derived SH-SY5Y neuroblastoma cell line. Results: Global Pattern Recognition (GPR) analysis identified a total of 9 genes (DRD3⁎, FOS†, JUN⁎, GAD1⁎†, NRG1⁎, PAFAH1B3⁎, PER3⁎, RELN⁎ and RGS4⁎) to be significantly regulated in response to cellular challenge with the mood stabilisers sodium valproate (⁎) and lithium (†). Modulation of FOS and JUN highlight the importance of the activator protein 1 (AP-1) transcription factor pathway in the cell response. Enrichment analysis of transcriptional networks relating to this gene set also identified the transcription factor neuron restrictive silencing factor (NRSF) and the oestrogen receptor as an important regulatory mechanism. Limitations: Cell line models offer a window of what might happen in vivo but have the benefit of being human derived and homogenous with regard to cell type. Conclusions: This data highlights transcription factor pathways, acting synergistically or separately, in the modulation of specific neuronal gene networks in response to mood stabilising drugs. This model can be utilised in the comparison of the action of multiple drug regimes or for initial screening purposes to inform optimal drug design.
    Journal of Affective Disorders 10/2014; 172. DOI:10.1016/j.jad.2014.09.024 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Regulator of G-protein Signaling 2 (RGS2) is a key regulator of G-protein-coupled signaling pathways involved in fear and anxiety. Data from rodent models and genetic analysis of anxiety-related traits and disorders in humans suggest down-regulation of RGS2 expression to be a risk factor for anxiety. Here we investigated, whether genetic variation in microRNAs mediating posttranscriptional down-regulation of RGS2 may be a risk factor for anxiety as well. 75 microRNAs predicted to regulate RGS2 were identified by four bioinformatic algorithms and validated experimentally by luciferase reporter gene assays. Specificity was confirmed for six microRNAs (hsa-miR-1271-5p, hsa-miR-22-3p, hsa-miR-3591-3p, hsa-miR-377-3p, hsa-miR-4717-5p, hsa-miR-96-5p) by disrupting their seed sequence at the 3' untranslated region of RGS2. Hsa-miR-4717-5p showed the most robust effect on RGS2 and regulated two other candidate genes of anxiety disorders (CNR1 and IKBKE) as well. Two SNPs (rs150925, rs161427) within and 1,000 bp upstream of the hostgene of hsa-miR-4717-5p (MIR4717) show a minor allele frequency greater than 0.05. Both were in high linkage disequilibrium (r(2) = 1, D' = 1) and both major (G) alleles showed a trend for association with panic disorder with comorbid agoraphobia in one of two patient/control samples (combined npatients = 497). Dimensional anxiety traits, as described by Anxiety Sensitivity Index (ASI) and Agoraphobic Cognitions Questionnaire (ACQ) were significantly higher among carriers of both major (G) alleles in a combined patient/control sample (ncombined = 831). Taken together, data indicate that MIR4717 regulates human RGS2 and contributes to the genetic risk towards anxiety-related traits. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 04/2015; DOI:10.1002/ajmg.b.32312 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The GABA synthetic enzyme glutamic acid decarboxylase (GAD)65 is critically involved in the activity-dependent regulation of GABAergic inhibition in the central nervous system. It is also required for the maturation of the GABAergic system during adolescence, a phase that is critical for the development of several neuropsychiatric diseases. Mice bearing a null mutation of the GAD65 gene develop hyperexcitability of the amygdala and hippocampus, and a phenotype of increased anxiety and pathological fear memory reminiscent of post-traumatic stress disorder. Although genetic association of GAD65 in human has not yet been reported, these findings are in line with observations of reduced GABAergic function in these brain regions of anxiety disorder patients. The particular value of GAD65(−/−) mice thus lies in modeling the effects of reduced GABAergic function in the mature nervous system. The expression of GAD65 and a second GAD isozyme, GAD67, are differentially regulated in response to stress in limbic brain areas suggesting that by controlling GABAergic inhibition these enzymes determine the vulnerability for the development of pathological anxiety and other stress-induced phenotypes. In fact, we could recently show that GAD65 haplodeficiency, which results in delayed postnatal increase of GABA levels, provides resilience to juvenile-stress induced anxiety to GAD65(+/−) mice thus foiling the increased fear and anxiety in homozygous GAD65(−/−) mice.
    Genes Brain and Behavior 09/2014; DOI:10.1111/gbb.12188 · 3.51 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
May 23, 2014