Novel Quinazolinone MJ-29 Triggers Endoplasmic Reticulum Stress and Intrinsic Apoptosis in Murine Leukemia WEHI-3 Cells and Inhibits Leukemic Mice

Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
PLoS ONE (Impact Factor: 3.23). 05/2012; 7(5):e36831. DOI: 10.1371/journal.pone.0036831
Source: PubMed


The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca(2+) release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future.

12 Reads
  • Source
    • "One of the hallmarks of cancer is the resistance of cancer cells towards apoptosis which contributes to the ineffectiveness of anticancer therapies [12]. Apoptosis is characterized by several biochemical and morphological events, such as nuclear fragmentation, internucleosomal DNA fragmentation [13], cell shrinkage [14], chromatin condensation [15], formation of apoptotic bodies, loss of plasma membrane asymmetry [16], and disruption of mitochondrial membrane [17]. In an attempt to understand the mechanism(s) of action involved, we have investigated the effect(s) of helichrysetin on the viability of selected cancer cell lines. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Researchers are looking into the potential development of natural compounds for anticancer therapy. Previous studies have postulated the cytotoxic effect of helichrysetin towards different cancer cell lines. In this study, we investigated the cytotoxic effect of helichrysetin, a naturally occurring chalcone on four selected cancer cell lines, A549, MCF-7, Ca Ski, and HT-29, and further elucidated its biochemical and molecular mechanisms in human lung adenocarcinoma, A549. Helichrysetin showed the highest cytotoxic activity against Ca Ski followed by A549. Changes in the nuclear morphology of A549 cells such as chromatin condensation and nuclear fragmentation were observed in cells treated with helichrysetin. Further evidence of apoptosis includes the externalization of phosphatidylserine and the collapse of mitochondrial membrane potential which are both early signs of apoptosis. These signs of apoptosis are related to cell cycle blockade at the S checkpoint which suggests that the alteration of the cell cycle contributes to the induction of apoptosis in A549. These results suggest that helichrysetin has great potentials for development as an anticancer agent.
    Evidence-based Complementary and Alternative Medicine 03/2013; 2013(3):857257. DOI:10.1155/2013/857257 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Indole-3-carbinol (I3C), a potential anticancer substance, can be found in cruciferous (cabbage family) vegetables, mainly cauliflower and Chinese cabbage. However, the bioactivity of I3C on the apoptotic effects of murine leukemia WEHI-3 cells and promotion of immune responses in leukemia mice model are unclear. In this study, we investigated the effect of I3C on cell-cycle arrest and apoptosis in vitro and immunomodulation in vivo. I3C decreased the viable WEHI-3 cells and caused morphological changes in a concentration- and time-dependent manner. I3C also led to G0/G1 phase arrest, decreased the levels of cyclin A, cyclin D, and CDK2, and increased the level of p21(WAF1/CIP1). Flow cytometric analyses further proved that I3C promoted ROS and intracellular Ca(2+) production and decreased the levels of ΔΨ(m) in WEHI-3 cells. Cells after exposure to I3C for 24 h showed DNA fragmentation and chromatin condensation. Comet assay also indicated that I3C induced DNA damage in examined cells. I3C increased the levels of cytochrome c, FADD, GADD153, GRP78, and caspase-12 as well as induced activities of caspase-3, -8, and -9. Moreover, I3C attenuated NF-κB DNA binding activity in I3C-treated WEHI-3 cells as shown by EMSA and Western blotting analyses. In the in vivo study, we examined the effects of I3C on WEHI-3 leukemia mice. Results showed that I3C increased the level of T cells and decreased the level of macrophages. I3C also reduced the weights of liver and spleen, and it promoted phagocytosis by macrophages as compared to the nontreated leukemia mice group. On the basis of our results, I3C affects murine leukemia WEHI-3 cells both in vitro and in vivo.
    Journal of Agricultural and Food Chemistry 07/2012; 60(31):7634-43. DOI:10.1021/jf300963t · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bufalin has been reported to induce apoptosis in a variety of cancers but little is demonstrated in oral squamous cell carcinoma (OSCC) cells. The present study investigated the inhibition of proliferation, cell cycle arrest and apoptotic effects of bufalin in CAL 27 human oral cancer cells. Bufalin inhibited the growth of CAL 27 cells in a concentration-dependent manner and an IC50 value of bufalin was about 125 nM for 24 h treatment using the MTT assay. Moreover, the cell cycle distribution was arrested at the G0/G1 phase in CAL 27 cells after bufalin exposure. Upon bufalin stimulation, the expression of Bcl-2 was significantly decreased while that of cytochrome c, Apaf-1 and AIF was increased compared to the control group by western blot analysis. An increase in the expression of the active form of caspases was found in bufalin-treated cells, and the caspase activities were also elevated. Bufalin-triggered apoptosis was blocked by specific inhibitors of caspase-9 (z-LEHD-fmk) and caspase-3 (z-DEVD-fmk), respectively. In contrast, CAL 27 cells overexpressing constitutively active AKT (CAL 27/CA-AKT) were exposed to bufalin at different concentrations, and cell growth remained unchanged. Bufalin exhibited minimal apoptotic effects on CAL 27/CA-AKT cells. Taken together, bufalin induced G0/G1 phase arrest and provoked the intrinsic apoptotic pathway via AKT activation in CAL 27 cells. Our data suggest that bufalin could be potentially efficacious in the treatment of oral cancer in the future.
    International Journal of Oncology 08/2012; 41(5):1683-92. DOI:10.3892/ijo.2012.1605 · 3.03 Impact Factor
Show more

Preview (3 Sources)

12 Reads
Available from