Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway.

School of Biology and Environmental Science & Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
Nature Cell Biology (Impact Factor: 20.06). 06/2012; 14(7):764-74. DOI: 10.1038/ncb2510
Source: PubMed

ABSTRACT The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We currently lack a broader mechanistic understanding of the integration of the early secretory pathway with other homeostatic processes such as cell growth. Here, we explore the possibility that Sec16A, a major constituent of endoplasmic reticulum exit sites (ERES), acts as an integrator of growth factor signalling. Surprisingly, we find that Sec16A is a short-lived protein that is regulated by growth factors in a manner dependent on Egr family transcription factors. We hypothesize that Sec16A acts as a central node in a coherent feed-forward loop that detects persistent GF stimuli to increase ERES number. Consistent with this notion, Sec16A is also regulated by short-term growth factor treatment that leads to increased turnover of Sec16A at ERES. Finally, we demonstrate that Sec16A depletion reduces, while its overexpression increases proliferation. Together with our finding that growth factors regulate Sec16A levels and its dynamics on ERES, we propose this protein as an integrator linking growth factor signalling and secretion. This provides a mechanistic basis for the previously proposed link between secretion and proliferation.
    Journal of Cell Science 12/2014; DOI:10.1242/jcs.157115 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma membrane proteins are essential molecules in the cell which mediate interactions with the exterior milieu, thus representing key drug targets for present pharma. Not surprisingly, protein traffic disorders include a large range of diseases sharing the common mechanism of failure in the respective protein to reach the plasma membrane. However, specific therapies for these diseases are remarkably lacking. Herein, we report a robust platform for drug discovery applied to a paradigmatic genetic disorder affecting intracellular trafficking - Cystic Fibrosis. This platform includes (i) two original respiratory epithelial cellular models incorporating an inducible double-tagged traffic reporter; (ii) a plasma membrane protein traffic assay for high-throughput microscopy screening; and (iii) open-source image analysis software to quantify plasma membrane protein traffic. By allowing direct scoring of compounds rescuing the basic traffic defect, this platform enables an effective drug development pipeline, which can be promptly adapted to any traffic disorder-associated protein and leverage therapy development efforts.
    Scientific Reports 03/2015; 5:9038. DOI:10.1038/srep09038 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rab proteins, small GTPases, are key regulators of mammalian Golgi apparatus organization. Based on the effect of Rab activation state, Rab proteins fall into two functional classes. In Class1, inactivation induces Golgi ribbon fragmentation and/or redistribution of Golgi enzymes to the Endoplasmic Reticulum, while overexpression of wild type or activation has little, if any, effect on Golgi ribbon organization. In Class 2, the reverse is true. We give emphasis to Rab6, the most abundant Golgi-associated Rab protein. Rab6 depletion in HeLa cells causes an increase in Golgi cisternal number, longer, more continuous cisternae, and a pronounced accumulation of vesicles; the effect of Rab6 on Golgi ribbon organization is probably through regulation of vesicle transport. In effector studies, motor proteins and their regulators are found to be key Rab6 effectors. A related Rab, Rab41, affects Golgi ribbon organization in a contrasting manner. The balance between minus- and plus-end directed motor recruitment may well be the major Rab-dependent factor in Golgi ribbon organization. Copyright © 2015 Elsevier Inc. All rights reserved.
    International review of cell and molecular biology 01/2015; 315:1-22. DOI:10.1016/bs.ircmb.2014.12.002 · 4.52 Impact Factor