Article

Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.

CT and MR Contrast Media Research, Bayer Pharma AG, Berlin, Germany.
Investigative radiology (Impact Factor: 4.85). 05/2012; 47(7):383-91. DOI: 10.1097/RLI.0b013e31824c5a57
Source: PubMed

ABSTRACT Tumor imaging via molecular magnetic resonance imaging (MRI) that uses specific superparamagnetic iron oxide particles (SPIOs) has been addressed in the literature several times in the last 20 years. To our knowledge, none of the reported approaches is currently used for routine clinical diagnostic evaluation, nor are any in clinical development. This raises questions as to whether SPIO-enhanced molecular MRI is sensitive and specific enough for use in clinical practice. The aim of our preclinical study was to investigate the minimum requirements for obtaining sensitive molecular MRI for use in tumor evaluations under optimal conditions. The well-vascularized F9 teratocarcinoma tumor model, which exhibits high levels of the highly accessible target CD105 (endoglin), was used to compare the accumulation and visualization of target-specific SPIOs by MRI.
Superparamagnetic iron oxide particles were optimized in the following ways: (a) proton relaxivity was increased for higher imaging sensitivity, (b) a coating material was used for optimal loading density of the αCD105 antibody, and (c) binding activity to the target CD105 was increased. Binding activity and specificity were confirmed in vitro using enzyme-linked immunosorbent assay and in vivo using pharmacokinetic and biodistribution studies of 11 F9 teratoma-bearing mice together with micro-autoradiography. CD105 target expression was determined using immunohistochemistry and quantitative enzyme-linked immunosorbent assay. The transverse relaxation rate R2* was quantified by 3.0-T MRI in the tumors, kidneys, and muscles before and up to 60 minutes after injection in 11 mice. The use of [Fe]-labeled SPIOs for all in vivo experiments allowed for the direct correlation of the imaging results with SPIO accumulation.
High-relaxivity αCD105-polyacrylic acid-SPIOs (r2 up to 440 L mmol Fe s) with strong binding activity accumulated specifically in tumors (1.4% injected dose/g) and kidneys (4.1% injected dose/g) in a manner dependent on the target concentration. The accumulation occurred within the first 3 minutes after injection. Visualization of specific SPIOs was accomplished with MRI. In contrast to the successful use of MRI in all examined kidneys (mean ± SEM ΔR2*, 61 ± 11 s), only 6 of 11 tumors (mean ± SEM ΔR2*, 15 ± 7 s) showed a clear signal when compared with the control even though optimal conditions were used.
The accumulation of CD105-specific SPIOs in F9 mouse teratomas was robust. However, visualization of the specifically accumulated SPIOs by MRI was not reliable because of its limited signal detection sensitivity. We postulate that it will be challenging to improve the imaging properties of targeted SPIOs further. Therefore, molecular MRI by targeted SPIOs is currently not suitable for clinical tumor imaging using routinely applicable sequences and field strength.

0 Bookmarks
 · 
154 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sentinel lymph node (SLN) concept has become standard of care for patients with breast cancer and melanoma, yet its clinical application to other cancer types has been somewhat limited. This is mainly due to the reduced accuracy of conventional SLN mapping techniques (using blue dye and/or radiocolloids as lymphatic tracers) in cancer types where lymphatic drainage is more complex, and SLNs are within close proximity to other nodes or the tumour site. In recent years, many novel techniques for SLN mapping have been developed including fluorescence, x-ray, and magnetic resonant detection. Whilst each technique has its own advantages/disadvantages, the role of targeted contrast agents (for enhanced retention in the SLN, or for immunostaging) is increasing, and may represent the new standard for mapping the SLN in many solid organ tumours. This review article discusses current limitations of conventional techniques, limiting factors of nanoparticulate based contrast agents, and efforts to circumvent these limitations with modern tracer architecture.
    Biotechnology advances 11/2013; · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate detection of lymph node metastases is critical for many solid tumours in order to guide treatment strategies and determine prognostic outcomes. The gold standard for detection of metastasis is by histological analysis of formalin fixed paraffin embedded (FFPE) sections of removed lymph nodes; this analysis method has remained largely unchanged for decades. Recent studies have highlighted limitations in the sensitivity of this approach, at least in its current clinical use, to detect very small metastatic deposits. Importantly the poor prognostic outcomes associated with the presence of such small tumour deposits is now well established in a number of cancers. In addition, histological analysis of FFPE sections cannot be used practically for intraoperative node assessment. Novel lymph node staging technologies are therefore actively being developed. This review critically presents the main advances in this field and discusses why these technologies have not been able to provide a better alternative to the current gold standard diagnostic technique. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 01/2014; · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MRI offers high spatial resolution with excellent tissue penetration but it has limited sensitivity and the commonly administered contrast agents lack specificity. In this study, two sets of iron oxide nanoparticles (IONPs) were synthesized that were designed to selectively undergo copper-free click conjugation upon sensing of matrix metalloproteinase (MMP) enzymes, thereby leading to a self-assembled superparamagnetic nanocluster network with T2 signal enhancement properties. For this purpose, IONPs with bioorthogonal azide and alkyne surfaces masked by polyethylene glycol (PEG) layers tethered to CXCR4-targeted peptide ligands were synthesized and characterized. The IONPs were tested in vitro and T2 signal enhancements of around 160 % were measured when the IONPs were incubated with cells expressing MMP2/9 and CXCR4. Simultaneous systemic administration of the bioorthogonal IONPs in tumor-bearing mice demonstrated the signal-enhancing ability of these ‘smart’ self-assembling nanomaterials.
    Angewandte Chemie 07/2014;

Full-text

Download
83 Downloads
Available from
Jun 3, 2014