Testing NF-kB-based therapy in hemiparkinsonian monkeys

Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 320, Chicago, IL 60612, USA.
Journal of Neuroimmune Pharmacology (Impact Factor: 3.17). 06/2012; 7(3):544-56. DOI: 10.1007/s11481-012-9377-9
Source: PubMed

ABSTRACT Parkinson's disease (PD) is the most common human neurodegenerative disorder affecting movement, balance, flexibility, and coordination. Despite intense investigation, no effective therapy is available to stop the onset PD or halt its progression. The primate model of PD is considered to be one of the best available models for human PD. Since neuroinflammation plays an important role in the pathogenesis of PD and NF-κB, a proinflammatory transcription factor, participates in the transcription of many proinflammatory molecules, this study evaluates the ability of a peptide corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase (IKK)α or IKKβ to protect dopaminergic neurons in hemiparkinsonian monkeys. First, we found that NF-κB was activated within the substantia nigra pars compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated hemiparkinsonian monkeys. However, intramuscular injection of wild type NBD (wtNBD) peptide reduced nigral activation of NF-κB and expression of inducible nitric oxide synthase, protected both the nigrostriatal axis and neurotransmitters, and improved motor functions in hemiparkinsonian monkeys. These findings were specific as mutated NBD peptide did not exhibit such effects. These results may help in the translation of NF-κB-based therapy to PD clinics.

Download full-text


Available from: Avik Roy, Aug 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation involving activated microglia and astroglia is becoming a hallmark of many human diseases, including neurodegenerative disorders. Although NF-κB is a multifunctional transcription factor, it is an important target for controlling inflammation as the transcription of many proinflammatory molecules depends on the activation of NF-κB. Here, we have undertaken a novel approach to attenuate NF-κB activation and associated inflammation in activated glial cells. RNS60 is a 0.9% saline solution containing charge-stabilized nanostructures that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not normal saline, RNS10.3 (TCP-modified saline without excess oxygen), and PNS60 (saline containing excess oxygen without TCP modification) were found to inhibit the production of nitric oxide (NO) and the expression of inducible NO synthase in activated microglia. Similarly, RNS60 also inhibited the expression of inducible NO synthase in activated astroglia. Inhibition of NF-κB activation by RNS60 suggests that RNS60 exerts its anti-inflammatory effect through the inhibition of NF-κB. Interestingly, RNS60 induced the activation of type IA phosphatidylinositol (PI) 3-kinase and Akt and rapidly up-regulated IκBα, a specific endogenous inhibitor of NF-κB. Inhibition of PI 3-kinase and Akt by either chemical inhibitors or dominant-negative mutants abrogated the RNS60-mediated up-regulation of IκBα. Furthermore, we demonstrate that RNS60 induced the activation of cAMP-response element-binding protein (CREB) via the PI 3-kinase-Akt pathway and that RNS60 up-regulated IκBα via CREB. These results describe a novel anti-inflammatory property of RNS60 via type IA PI 3-kinase-Akt-CREB-mediated up-regulation of IκBα, which may be of therapeutic benefit in neurodegenerative disorders.
    Journal of Biological Chemistry 06/2012; 287(35):29529-42. DOI:10.1074/jbc.M111.338012 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders.
    Journal of Neuroimmune Pharmacology 03/2013; 8(3). DOI:10.1007/s11481-013-9447-7 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b) and a-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase (TH)-positive neurons in the nigra, decrease in TH-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone (DHT) pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS (-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important as castrated young male mice may be used as a simple, toxin-free and non-transgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.
    Journal of Biological Chemistry 06/2013; 288(29). DOI:10.1074/jbc.M112.443556 · 4.57 Impact Factor
Show more