Article

Testing NF-κB-based therapy in hemiparkinsonian monkeys.

Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 320, Chicago, IL 60612, USA.
Journal of Neuroimmune Pharmacology (Impact Factor: 3.8). 06/2012; 7(3):544-56. DOI: 10.1007/s11481-012-9377-9
Source: PubMed

ABSTRACT Parkinson's disease (PD) is the most common human neurodegenerative disorder affecting movement, balance, flexibility, and coordination. Despite intense investigation, no effective therapy is available to stop the onset PD or halt its progression. The primate model of PD is considered to be one of the best available models for human PD. Since neuroinflammation plays an important role in the pathogenesis of PD and NF-κB, a proinflammatory transcription factor, participates in the transcription of many proinflammatory molecules, this study evaluates the ability of a peptide corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase (IKK)α or IKKβ to protect dopaminergic neurons in hemiparkinsonian monkeys. First, we found that NF-κB was activated within the substantia nigra pars compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated hemiparkinsonian monkeys. However, intramuscular injection of wild type NBD (wtNBD) peptide reduced nigral activation of NF-κB and expression of inducible nitric oxide synthase, protected both the nigrostriatal axis and neurotransmitters, and improved motor functions in hemiparkinsonian monkeys. These findings were specific as mutated NBD peptide did not exhibit such effects. These results may help in the translation of NF-κB-based therapy to PD clinics.

0 Bookmarks
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Marmosets rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and treated with L-3,4-dihydroxyphenylalanine (L-DOPA) develop dyskinesia, but with differing degrees of severity. To provide insight into the molecular mechanisms responsible for the different level of dyskinesia to manifest in individual animals, proteins in striatum from MPTP-treated marmosets with different levels of L-DOPA-induced dyskinesia were separated by 2-dimensional (2-D) protein electrophoresis. Thirty-five differentially expressed proteins were identified by mass spectrometry and peptide mass fingerprinting, and comparative analysis found 10 were significantly increased and 3 had significantly reduced expression in animals with a high level of dyskinesia when compared to animals with a low incidence of dyskinesia. These proteins belonged to a range of functional classes, for example, molecular chaperones, metabolic enzymes and synaptic structural proteins. The findings of this study provide clues about the molecular mechanisms that cause dyskinesia to manifest and point towards potential novel targets for the development of therapeutic agents to prevent or treat established dyskinesia.
    Journal of Molecular Neuroscience 10/2013; · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias.
    PLoS ONE 01/2014; 9(7):e101883. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1-42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase - Akt - BAD pathway. Furthermore, RNS60 also decreased Aβ(1-42)-induced tau phosphorylation via (PI-3 kinase - Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD.
    PLoS ONE 01/2014; 9(8):e103606. · 3.53 Impact Factor

Full-text

View
104 Downloads
Available from
May 31, 2014