Type I immune response cytokine-chemokine cascade is associated with pulmonary arterial hypertension

Division of Pulmonary, Critical-Care, Allergy & Immunology
The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation (Impact Factor: 5.61). 05/2012; 31(8):865-73. DOI: 10.1016/j.healun.2012.04.008
Source: PubMed

ABSTRACT Perivascular infiltrating mononuclear cells have been described in the vasculopathy found in multiple types of pulmonary arterial hypertension (PAH). We determined the expression of a specific type 1 immune response cytokine-chemokine cascade-interleukin (IL)-18 → (monokine induced by γ-interferon [MIG]/chemokine [C-X-C motif] ligand [CXCL] 9, interferon γ-induced protein [IP]-10/CXCL10 and interferon-inducible T-cell α chemoattractant [ITAC]/CXCL11)-in plasma samples from individuals with World Health Organization (WHO) Group 1 PAH.
We analyzed cytokine and chemokine protein levels in plasma from 43 individuals with WHO Group 1 PAH by enzyme-linked immunosorbent assay compared with 35 healthy individuals. Immunohistochemical studies on tissue specimens from WHO Group 1 PAH patients were performed for cytokines and chemokines and their respective receptors.
Plasma IL-18 levels from WHO Group 1 PAH patients were significantly increased compared with healthy controls. Downstream chemokine CXCL10, but not CXCL9 or CXCL11, was markedly elevated compared with controls. Cellular sources of IL-18 were medial but not intimal smooth muscle cells. IL-18Rα was expressed from medial smooth muscle cells, endothelial cells, and mononuclear cells. CXCL10 and its main receptor, CXCR3, were expressed from infiltrating vascular wall mononuclear cells.
These data suggest that augmented expression of IL-18 and CXCL10 may perpetuate an inflammatory milieu that eventually contributes to the vascular obstruction characteristic of PAH.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.
    Current Hypertension Reports 09/2014; 16(9):469. DOI:10.1007/s11906-014-0469-1 · 3.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PAH) is associated with structural alterations of lung vasculature. PAH is still a devastating disease needing an aggressive therapeutic approach. Despite the therapeutic potential of human umbilical cord mesenchymal stem cells (MSCs), the molecular parameters to define the stemness remain largely unknown. Using high-density oligonucleotide microarrays, the differential gene expression profiles between a fraction of mononuclear cells of human umbilical cord blood (UCB) and its MSC subpopulation were obtained. Of particular interest was a subset of 46 genes preferentially expressed at 7-fold or higher in the group treated with human UCB-MSCs. This subset contained numerous genes involved in the inflammatory response, immune response, lipid metabolism, cell adhesion, cell migration, cell differentiation, apoptosis, cell growth, transport, cell proliferation, transcription, and signal transduction. Our results provide a foundation for a more reproducible and reliable quality control using genotypic analysis for the definition of human UCB-MSCs. Therefore, our results will provide a basis for studies on molecular mechanisms controlling the core properties of human MSCs.
    Anatomy & cell biology 12/2014; 47(4):217-26. DOI:10.5115/acb.2014.47.4.217
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial hypertension (PH) is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT)-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK) phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt) pathway and nuclear factor (NF)-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-1α, lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.
    PLoS ONE 08/2014; 9(8):e104890. DOI:10.1371/journal.pone.0104890 · 3.53 Impact Factor