The tyrosine gate as a potential entropic lever in the receptor-binding site of the bacterial adhesin FimH.

Structural Molecular Microbiology, Vrije Universiteit Brussel, VIB, Brussels, Belgium.
Biochemistry (Impact Factor: 3.38). 06/2012; 51(24):4790-9. DOI: 10.1021/bi300251r
Source: PubMed

ABSTRACT Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections. During infection, UPEC adhere to mannosylated glycoreceptors on the urothelium via the FimH adhesin located at the tip of type 1 pili. Synthetic FimH antiadhesives such as alkyl and phenyl α-D-mannopyranosides are thus ideal candidates for the chemical interception of this crucial step in pathogenesis. The crystal structures of the FimH lectin domain in its ligand-free form and in complexes with eight medium- and high-affinity mannopyranoside inhibitors are presented. The thermodynamic profiles of the FimH-inhibitor interactions indicate that the binding of FimH to α-D-mannopyranose is enthalpy-driven and has a negative entropic change. Addition of a hydrophobic aglycon influences the binding enthalpy and can induce a favorable entropic change. The alleviation of the entropic cost is at least in part explained by increased dynamics in the tyrosine gate (Tyr48 and Tyr137) of the FimH receptor-binding site upon binding of the ligand. Ligands with a phenyl group directly linked to the anomeric oxygen of α-D-mannose introduce the largest dynamics into the Tyr48 side chain, because conjugation with the anomeric oxygen of α-D-mannose forces the aromatic aglycon into a conformation that comes into close contact (≈2.65 Å) with Tyr48. A propargyl group in this position predetermines the orientation of the aglycon and significantly decreases affinity. FimH has the highest affinity for α-D-mannopyranosides substituted with hydrophobic aglycons that are compatible in shape and electrostatic properties to the tyrosine gate, such as heptyl α-D-mannose.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria express a multitude of hair-like adhesive appendages on their cell surfaces, together referred to as pili or fimbriae. In Gram-negative bacteria, these proteinaceous structures are assembled through a number of dedicated secretion pathways including the chaperone–usher pathway, the nucleation/precipitation pathway and the type IV pilus pathway. Pili are prevalent in pathogenic strains and play important roles in the establishment and persistence of bacterial infections by mediating host cell adhesion, cell invasion or biofilm formation. Their indispensible roles in pathogenesis render them attractive targets for directed therapeutic intervention. Here, we describe the recent advances in the chemical attenuation of pilus-associated virulence in Gram-negative bacteria.
    Current Opinion in Microbiology 02/2013; · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in small-angle X-ray scattering (SAXS) have led to the ability to model the glycans on glycoproteins and to obtain the low-resolution solution structures of complexes of lectins bound to multivalent glycan-presenting scaffolds. This progress in SAXS can respond to the increasing interest in the biological action of glycoproteins and lectins and in the design of multivalent glycan-based antagonists. Carbohydrates make up a significant part of the X-ray scattering content in SAXS and should be included in the model together with the protein, whose structure is most often based on a crystal structure or NMR ensemble, to give a far-improved fit with the experimental data. The modeling of the spatial positioning of glycans on proteins or in the architecture of lectin-glycan complexes delivers low-resolution structural information hitherto unmatched by any other method. SAXS data on the bacterial lectin FimH, strongly bound to heptyl α-D-mannose on a sevenfold derivatized β-cyclodextrin, permitted determination of the stoichiometry of the complex and the geometry of the lectin deposition on the multivalent β-cyclodextrin. The SAXS methods can be applied to larger complexes as the technique imposes no limit on the size of the macromolecular assembly in solution.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1200:511-26. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotics resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
    Biochimica et Biophysica Acta 05/2014; · 4.66 Impact Factor


Available from
Jun 3, 2014