Phosphonium-Based Ionic Liquids: An Overview

Australian Journal of Chemistry (Impact Factor: 1.64). 04/2009; 62:309-321. DOI: 10.1071/CH08558

ABSTRACT Phosphonium cation-based ionic liqs. (ILs) are a readily available family of ILs that in some applications offer superior properties as compared to nitrogen cation-based ILs. Applications recently investigated include their use as extn. solvents, chem. synthesis solvents, electrolytes in batteries and super-capacitors, and in corrosion protection. At the same time the range of cation-anion combinations available com. has also been increasing in recent years. Here, we provide an overview of the properties of these interesting materials and the applications in which they are appearing. [on SciFinder (R)]

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redox of ferrocen couple (Fc+/Fc) in the 1 M Cyphos IL-104/ethanol electrolyte system was studied via cyclic voltammetry under both inert and air atmospheres at room temperature. The anodic and cathodic peak potentials for Fc+/Fc were obtained at scan rates of 0.02, 0.1, and 0.2 V/s. The half-potential of Fc+/Fc versus a silver quasi-reference electrode (QAg) changed from 0.80969 to 0.84945 V and from 0.79872 to 0.8627 V at the glassy-carbon (GC)- and platinum (Pt)- working electrodes (WE), respectively, demonstrating that it depended on the presence of water from 0.1 to 0.3 wt.% in the 1 M Cyphos IL-104/ethanol electrolyte system. The half-potential of Fc+/Fc versus quasi-platinum (QPt) was not changed for both working electrodes and for the same solutions; the differences between the half-potentials of Fc+/Fc versus QPt were 0.0022 and 0.00416 V at the GC- and Pt-WEs, respectively.
    Electrochimica Acta 05/2015; 163. DOI:10.1016/j.electacta.2015.02.138 · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strain (stress-free) relaxation in mechanically prestrained bone has a time constant of 75 s. It occurs by a reorganization of the proteoglycan-glycoprotein matrix between collagen fibers, which requires ionic interactions. Dissolving and relinking the ionic bonds is thus an important tool of nature to enable plastic deformation and to develop self-healing tissues. A way to transfer this approach to technical materials is the attachment of ionic end groups to polymeric chains. In these classes of materials, the so-called polymeric ionic liquids, structural recovery of thermally disorganized material is observed. A time constant between minutes and a week could be achieved, also by ionic rearrangement. The same mechanism, rearrangement of ionic bonds, can lead to vastly different relaxation times when the ionic interaction is varied by exchange of the cationic end groups or the anions.
    01/2014; 3(3):123-130. DOI:10.1680/bbn.14.00007
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper, experimental data on extractive desulfurization of liquid fuel using 3-butyl-4-methylthiazolium thiocyanate [BMTH]SCN is presented. The Fourier transform infrared (FTIR), H-1 NMR, and 13C NMR analyses have been discussed for the molecular confirmation of synthesized [BMTH]SCN. Further, conductivity, solubility, and viscosity analyses of [BMTH]SCN were performed. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of [BMTH]SCN without regeneration on removal of dibenzothiophene from liquid fuel were also investigated. In the extractive desulfurization process, the removal of dibenzothiophene in octane was 81.2% for mass ratio of 1:1 in 30 min at 30 degrees C under the mild reaction conditions. Thiazolium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of thiazolium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.
    Industrial & Engineering Chemistry Research 12/2014; 53(51):19845-19854. DOI:10.1021/ie501108w · 2.24 Impact Factor


Available from
May 20, 2014
Available from