The effects of dietary flavonoids on the regulation of redox inflammatory networks

Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
Frontiers in Bioscience (Impact Factor: 3.52). 01/2012; 17:2396-418.
Source: PubMed


Dietary flavonoids are a large family of polyphenols ubiquitously expressed in plants. Recent evidence show that flavonoids possess several anti-inflammatory activities due to their ability to scavenge reactive oxygen and nitrogen species (ROS and RNS), to inhibit the pro-inflammatory activity of ROS-generating enzymes including cyclooxygenase (COX), lipoxygenase (LOX) and inducible nitric oxide synthase (iNOS) and to modulate different intracellular signaling pathways from NF-kB to mitogen-activated protein kinases (MAPKs) through perturbation of redox-sensible networks in immune cells. This report will review current knowledge on the anti-inflammatory effects of flavonoids on immune cells focusing on their ability to modulate multiple redox-sensible pathways involved in inflammation.

Download full-text


Available from: Fabio Galvano, Jan 09, 2014
218 Reads
  • Source
    • "Numerous studies have shown that both MAPKs and NF-κB signaling pathways are involved in activation of an inflammatory response [57], [58]. Thus, inhibition of the LPS-stimulated signal transduction cascades has been proposed as a promising target for the treatment of inflammation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Apigenin is a non-toxic natural flavonoid that is abundantly present in common fruits and vegetables. It has been reported that apigenin has various beneficial health effects such as anti-inflammation and chemoprevention. Multiple studies have shown that inflammation is an important risk factor for atherosclerosis, diabetes, sepsis, various liver diseases, and other metabolic diseases. Although it has been long realized that apigenin has anti-inflammatory activities, the underlying functional mechanisms are still not fully understood. Methodology and Principal Findings In the present study, we examined the effect of apigenin on LPS-induced inflammatory response and further elucidated the potential underlying mechanisms in human THP-1-induced macrophages and mouse J774A.1 macrophages. By using the PrimePCR array, we were able to identify the major target genes regulated by apigenin in LPS-mediated immune response. The results indicated that apigenin significantly inhibited LPS-induced production of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNF-α through modulating multiple intracellular signaling pathways in macrophages. Apigenin inhibited LPS-induced IL-1β production by inhibiting caspase-1 activation through the disruption of the NLRP3 inflammasome assembly. Apigenin also prevented LPS-induced IL-6 and IL-1β production by reducing the mRNA stability via inhibiting ERK1/2 activation. In addition, apigenin significantly inhibited TNF-α and IL-1β-induced activation of NF-κB. Conclusion and Significance Apigenin Inhibits LPS-induced Inflammatory Response through multiple mechanisms in macrophages. These results provided important scientific evidences for the potential application of apigenin as a therapeutic agent for inflammatory diseases.
    PLoS ONE 09/2014; 9(9):e107072. DOI:10.1371/journal.pone.0107072 · 3.23 Impact Factor
  • Source
    • "Radiomodulators have anti-inflammatory, anti-bacterial, anti-oxidant, and anti-mutagenic properties (Table 1) (Fang et al. 2002; Hong et al. 2006; Izzi et al. 2012). Similar properties are manifested in natural antioxidants. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
    SpringerPlus 08/2014; 3(1):414. DOI:10.1186/2193-1801-3-414
  • Source
    • "There have been numerous studies demonstrating the health benefits of flavonoids, which are mostly known for their antioxidant and anti-inflammatory properties, as well as the benefits they provide for cardiovascular health (Alezandro et al. 2013; Izzi et al. 2012; Macedo et al. 2013; Perez- Vizcaino and Duarte 2010). Due to their immense diversity, they are divided into subgroups including flavonols, flavanols, flavones, flavanones, isoflavones, anthocyanidins and chalcones. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.
    Journal of Food Science and Technology -Mysore- 02/2014; 52(4). DOI:10.1007/s13197-014-1282-1 · 2.20 Impact Factor
Show more

Similar Publications