A Complete Sequence and Transcriptomic Analyses of Date Palm (Phoenix dactylifera L.) Mitochondrial Genome

University of Veterinary Medicine Hanover, Germany
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e37164. DOI: 10.1371/journal.pone.0037164
Source: PubMed

ABSTRACT Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters-18S-5S rRNA, rps3-rpl16 and nad3-rps12-in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.

Download full-text


Available from: Songnian Hu, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of non-adaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA (mtpts). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred since their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew towards nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
    Genome Biology and Evolution 11/2014; 6(12). DOI:10.1093/gbe/evu253 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the evolution of mitochondrial genomic diversity within a single order of angiosperms, we sequenced seven Brassicales genomes and the transcriptome of Brassica oleracea. In the common ancestor of Brassicaceae, several genes of known function were lost and the ccmFN gene was split into two independent genes, which also coincides with a trend of genome reduction towards the smallest sequenced angiosperm genomes of Brassica. For most ORFs of unknown function, the lack of conservation throughout Brassicales and the generally low expression and absence of RNA editing in B. oleracea argues against functionality. However, two chimeric ORFs were expressed and edited in B. oleracea, suggesting a potential role in cytoplasmic male sterility in certain nuclear backgrounds. These results demonstrate how frequent shifts in size, structure, and content of plant mitochondrial genomes can occur over short evolutionary time scales.
    Mitochondrion 06/2014; DOI:10.1016/j.mito.2014.05.008 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA rearrangements occur very frequently in flowering plants and when close to genes there must be concomitant acquisition of new regulatory cis-elements. To explore whether there might be limits to such DNA shuffling, we have mapped the termini of mitochondrial mRNAs in wheat, a monocot, and compared them to the known positions for counterpart genes in the eudicot Arabidopsis. Nine genes share homologous 3' UTRs over their full-length and for six of them, the termini map very close to the site of wheat/Arabidopsis DNA rearrangements. Only one such case was seen for comparisons of 5' UTRs, and the 5' ends of mRNAs are typically more heterogeneous than 3' termini. Approximately half of the thirty-one wheat mitochondrial transcriptional units are preceded by CRTA promoter-like motifs, and of the potential stem-loop or tRNA-like structures identified as candidate RNA processing/stability signals near the 5' or 3' ends, several are shared with Arabidopsis. Comparison of the mitochondrial gene flanking sequences from normal fertile wheat (Triticum aestivum) with those of Aegilops kotschyi which is the source of mitochondria present in K-type cytoplasmic male sterile wheat, revealed six cases where mRNAs are precluded from sharing full-length homologous UTRs because of genomic reorganization events, and the presence of short repeats located at the sites of discontinuity points to a reciprocal recombination-mediated mode of rearrangement.
    Plant Molecular Biology 09/2012; 80(4-5):539-52. DOI:10.1007/s11103-012-9966-2 · 4.07 Impact Factor