Article

Mutation in RAB33B, which encodes a regulator of retrograde Golgi transport, defines a second Dyggve--Melchior--Clausen locus.

Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
Journal of Medical Genetics (Impact Factor: 5.7). 05/2012; 49(7):455-61. DOI:10.1136/jmedgenet-2011-100666
Source: PubMed

ABSTRACT Dyggve--Melchior--Clausen syndrome (DMC) is a chondrodysplasia that bears significant phenotypic resemblance to mucopolysaccharidosis type IV (Morquio disease). Autosomal recessive mutations in DYM are known to cause this disease through its role in Golgi organisation and intracellular traffic, but genetic heterogeneity is suspected.
A family with DMC and normal intellectual development underwent clinical evaluation followed by autozygosity mapping and exome sequencing. Immunoblot and immunofluorescence analyses were performed to characterise the effect of the mutation.
This multiplex consanguineous family links to a novel locus on 4q31.1. Exome sequencing revealed a missense mutation in RAB33B, which encodes a Rab protein with an established role in retrograde Golgi traffic. The mutation qualitatively replaces the invariant lysine residue in the guanine nucleotide-binding domain of this small GTPase protein and leads to marked protein deficiency, making it the likely causative mutation of DMC in this family.
This study identifies a new DMC gene and highlights the role of intracellular traffic in the pathogenesis of this disease.

0 0
 · 
0 Bookmarks
 · 
35 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Massively parallel DNA-sequencing systems provide sequence of huge numbers of different DNA strands at once. These technologies are revolutionizing our understanding in medical genetics, accelerating health-improvement projects, and ushering to a fully understood personalized medicine in near future. Whole-exome sequencing (WES) is application of the next-generation technology to determine the variations of all coding regions, or exons, of known genes. WES provides coverage of more than 95% of the exons, which contains 85% of disease-causing mutations in Mendelian disorders and many disease-predisposing SNPs throughout the genome. The role of more than 150 genes has been distinguished by means of WES, and this statistics is quickly growing. In this review, the impacts of WES in medical genetics as well as its consequences leading to improve health care are summarized.Journal of Human Genetics advance online publication, 7 November 2013; doi:10.1038/jhg.2013.114.
    Journal of Human Genetics 11/2013; · 2.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Skeletal dysplasias are challenging to diagnose because of their phenotypic variability, genetic heterogeneity, and diverse inheritance patterns. We conducted WES of a Turkish male with a suspected X-linked skeletal dysplasia of unknown etiology as well as his unaffected mother and maternal uncle. Bioinformatic filtering of variants implicated in skeletal system development revealed a novel hemizygous mutation, c.341-(11_9)delAAT, in an intron of TRAPPC2, the causative locus of spondyloepiphyseal dysplasia tarda (SEDT). We show that this deletion leads to the loss of wild-type TRAPPC2 and the generation of two functionally impaired mRNAs in patient cells. These consequences are predicted to disrupt function of SEDLIN/TRAPPC2. The clinical and research data were returned, with appropriate caveats, to the patient and informed his disease status and reproductive choices. Our findings expand the allelic repertoire of SEDT and demonstrate how prior filtering of the morbid human genome informed by inheritance pattern and phenotype, when combined with appropriate functional tests in patient-derived cells, can expedite discovery, overcome issues of missing data and help interpret variants of unknown significance. Finally, this example demonstrates how the return of a clinically confirmed mutational finding, supported by research allele pathogenicity data, can assist individuals with inherited disorders with life choices.
    Clinical Genetics 05/2013; · 4.25 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Autozygosity, or the inheritance of two copies of an ancestral allele, has the potential to not only reveal phenotypes caused by biallelic mutations in autosomal recessive genes, but to also facilitate the mapping of such mutations by flagging the surrounding haplotypes as tractable runs of homozygosity (ROH), a process known as autozygosity mapping. Since SNPs replaced microsatellites as markers for the purpose of genomewide identification of ROH, autozygosity mapping of Mendelian genes has witnessed a significant acceleration. Historically, successful mapping traditionally required favorable family structure that permits the identification of an autozygous interval that is amenable to candidate gene selection and confirmation by Sanger sequencing. This requirement presented a major bottleneck that hindered the utilization of simplex cases and many multiplex families with autosomal recessive phenotypes. However, the advent of next-generation sequencing that enables massively parallel sequencing of DNA has largely bypassed this bottleneck and thus ushered in an era of unprecedented pace of Mendelian disease gene discovery. The ability to identify a single causal mutation among a massive number of variants that are uncovered by next-generation sequencing can be challenging, but applying autozygosity as a filter can greatly enhance the enrichment process and its throughput. This review will discuss the power of combining the best of both techniques in the mapping of recessive disease genes and offer some tips to troubleshoot potential limitations.
    Human Genetics 08/2013; · 4.63 Impact Factor