Article

Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model

Department of Plastic Surgery, Hôpital Nord, Chemin des Bourrely, 13915 Marseille, France.
Burns: journal of the International Society for Burn Injuries (Impact Factor: 1.84). 05/2012; 38(6):820-9. DOI: 10.1016/j.burns.2012.02.008
Source: PubMed

ABSTRACT The wound healing attributes of five acellular dermal skin substitutes were compared, in a two-step procedure, in a porcine model. Ten pigs were included in this experimental and randomized study. During the first step, dermal substitutes (Integra(®), ProDerm(®), Renoskin(®), Matriderm(®) 2mm and Hyalomatrix(®) PA) were implanted into full-thickness skin wounds and the epidermis was reconstructed during a second step procedure at day 21 using autologous split-thickness skin graft or cultured epithelial autograft. Seven pigs were followed-up for 2 months and 3 pigs for 6 months. Dermal substitute incorporation, epidermal graft takes, wound contraction and Vancouver scale were assessed, and histological study of the wounds was performed. Results showed significant differences between groups in dermis incorporation and in early wound contraction, but there was no difference in wound contraction and in Vancouver scale after 2 and 6 months of healing. We conclude there was no long-term difference of scar qualities in our study between the different artificial dermis. More, there was no difference between artificial dermis and the control group. This study makes us ask questions about the benefit of artificial dermis used in a two-step procedure.

Download full-text

Full-text

Available from: Serge Mordon, Jun 11, 2015
4 Followers
 · 
520 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new "regenerative" approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders.
    Frontiers in Physiology 12/2012; 3:453. DOI:10.3389/fphys.2012.00453
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Currently, acellular dermal substitutes used for skin reconstruction are usually covered with split-thickness skin grafts. The goal of this study was to develop an animal model in which such dermal substitutes can be tested under standardized conditions using a bioengineered dermo-epidermal skin graft for coverage. METHODS: Bioengineered grafts consisting of collagen type I hydrogels with incorporated human fibroblasts and human keratinocytes seeded on these gels were produced. Two different dermal substitutes, namely Matriderm(®), and an acellular collagen type I hydrogel, were applied onto full-thickness skin wounds created on the back of immuno-incompetent rats. As control, no dermal substitute was used. As coverage for the dermal substitutes either the bioengineered grafts were used, or, as controls, human split-thickness skin or neonatal rat epidermis were used. Grafts were excised 21 days post-transplantation. Histology and immunofluorescence was performed to investigate survival, epidermis formation, and vascularization of the grafts. RESULTS: The bioengineered grafts survived on all tested dermal substitutes. Epidermis formation and vascularization were comparable to the controls. CONCLUSION: We could successfully use human bioengineered grafts to test different dermal substitutes. This novel model can be used to investigate newly designed dermal substitutes in detail and in a standardized way.
    Pediatric Surgery International 02/2013; DOI:10.1007/s00383-013-3267-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin is the largest organ of human body, acting as a barrier with protective, immunologic and sensorial functions. Its permanent exposure to the external environment can result in different kinds of damage with loss of variable volumes of extracellular matrix. For the treatment of skin lesions, several strategies are currently available, such as the application of autografts, allografts, wound dressings and tissue-engineered substitutes. Although proven clinically effective, these strategies are still characterized by key limitations such as patient morbidity, inadequate vascularization, low adherence to the wound bed, the inability to reproduce skin appendages and high manufacturing costs. Advanced strategies based on both bottom-up and top-down approaches offer an effective, permanent and viable alternative to solve the abovementioned drawbacks by combining biomaterials, cells, growth factors and advanced biomanufacturing techniques. This review details recent advances in skin regeneration and repair strategies, and describes their major advantages and limitations. Future prospects for skin regeneration are also outlined.
    Nanomedicine 04/2013; 8(4):603-21. DOI:10.2217/nnm.13.50