A new protoapigenone analog RY10-4 induces apoptosis and suppresses invasion through the PI3K/Akt pathway in human breast cancer.

Key Laboratory of Natural Medicinal Chemistry and Resources Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Cancer letters (Impact Factor: 5.02). 05/2012; 324(2):210-20. DOI: 10.1016/j.canlet.2012.05.025
Source: PubMed

ABSTRACT RY10-4, a novel protoapigenone analog, shows potent cytotoxicity against a broad spectrum of human cancer cells. Here we investigate its anti-tumor activity on breast cancer. The results indicated that RY10-4 suppressed proliferation, arrested cell cycle, induced apoptosis and inhibited invasion in MDA-MB-231, MCF-7 and SKBR3 breast cancer cells. Western blot analysis showed that RY10-4 down-regulated the PI3K/Akt signaling pathway and inhibited doxorubicin-induced p-Akt. Moreover, it effectively suppressed tumor growth in mice without major side effects. Therefore, RY10-4 had potential anti-tumor activity, and could be used as a lead to design more potent derivatives.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the article, we investigated the anti-metastasis mechanism of RY10-4, an anti-tumor compound derived from protoapigenone, in breast tumor cells MB-MDA-231. The analog of protoapigenone with an unaromatic B-ring was verified to suppress the proliferation of several tumor cells by previous research that also showed that several tumor progression such as inducing apoptosis and anti-angiogenesis could be acted on by RY10-4. In the article, we investigated the mechanism about how RY10-4 suppressed the invasion of MDA-MB-231. Firstly, the transwells assays with and without matrigel were adapted to evaluate the anti-metastasis and anti-invasion activity. Much research had demonstrated that the ECM and E-cadherin/β-catenin complex play an important role in cell adhesion and the formation of the cell skeleton, and as we knew the abnormal and absent expression of ECM and E-cadherin/β-catenin complex are found in many malignant cells. The result demonstrated that the amount and distribution of E-cadherin/β-catenin complex were backed on track by RY10-4, and the expression of MMP-2/9 in MDA-MB-231, which functions as a major negative factor of ECM, was down-regulated after co-cultured with RY10-4. Furthermore the pathway related to MMP-2/9 and E-cadherin was assessed by the western blot. As the results showed, the MAPK pathway and the spread of β-catenin were affected by RY10-4 to exert the anti-metastatis on MDA-MB-231. Collectively, the research revealed a novel anti-tumor ability of RY10-4 by inhibiting migration and invasion in MDA-MB-231.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 05/2014; · 2.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the potential regulation of sphingosine kinase 1 (SPHK1) on the migration, invasion, and matrix metalloproteinase (MMP) expression in human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). RA-FLS were transfected control siRNA or SPHK1 siRNA. The migration and invasion of unmanipulated control, control siRNA or SPHK1 siRNA- transfected RA-FLS in vitro were measured by the transwell system. The relative levels of SPHK1, PI3K, and AKT as well as AKT phosphorylation in RA-FLS were determined by Western blot. The levels of MMP-2/9 secreted by RA-FLS were detected by ELISA. Knockdown of SPHK1 significantly inhibited the spontaneous migration and invasion of RA-FLS, accompanied by significantly reduced levels of PI3K expression and AKT phosphorylation. Similarly, treatment with LY294002, an inhibitor of the PI3K/AKT pathway, inhibited the migration and invasion of RA-FLS. Knockdown of SPHK1 and treatment with the inhibitor synergistically inhibited the migration and invasion of RA-FLS, by further reducing the levels of PI3K expression and AKT phosphorylation. In addition, knockdown of SPHK1 or treatment with LY294002 inhibited the secretion of MMP-2 and MMP-9, and both synergistically reduced the production of MMP-2 and MMP-9 in RA-FLS in vitro. Knockdown of SPHK1 expression inhibits the PI3K/AKT activation, MMP-2 and MMP-9 expression, and human RA-FLS migration and invasion in vitro. Potentially, SPHK1 may be a novel therapeutic target for RA.
    Molecular Biology Reports 05/2014; · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the expressions of miR-22 and miR-135a in rats with acute edematous pancreatitis (AEP) and their target genes in order to shed light on the involvement of miR-22 and miR-135a in the pathogenesis of acute pancreatitis (AP). The in vivo model of AEP was established by introperitoneal injection of L-arginine (150 mg/kg) in rats. The miRNA microarray analysis was used to detect the differential expression of miRNAs in pancreatic tissue in AEP and normal rats. The in vitro AEP model was established by inducing the rat pancreatic acinar cell line (AR42J) with 50 ng/mL recombinant rat TNF-α. Real-time quantitative RT-PCR was employed to detect the expression of miR-22 and miR-135a in AR42J cells. Lentiviruses carrying the miRNA mimic and anti-miRNA oligonucleotide (AMO) of miR-22 and miR-135a were transfected into the AR42J cells. The AR42J cells transfected with vehicle served as control. Western blotting was used to measure the expression of activated caspase3 and flow cytometry analysis to detect the apoptosis of AR42J cells. Targets of miR-22 and miR-135a were predicted by using TargetScan, miRanda, and TarBase. Luciferase reporter assay and quantitative real-time RT-PCR were performed to confirm whether ErbB3 and Ptk2 were the target gene of miR-22 and miR-135a, respectively. The results showed that the expression levels of miR-22 and miR-135a were obviously increased in AEP group compared with the control group in in-vivo and in-vitro models. The expression levels of miR-22 and miR-135a were elevated conspicuously and the expression levels of their target genes were reduced significantly in AR42J cells transfected with lentiviruses carrying the miRNA mimic. The apoptosis rate was much higher in the TNF-α-induced cells than in non-treated cells. The AR42J cells transfected with miRNA AMOs expressed lower level of miR-22 and miR-135a and had lower apoptosis rate, but the expression levels of ErbB3 and Ptk2 were increased obviously. It was concluded that the expression levels of miR-22 and miR-135a were elevated in AEP. Up-regulating the expression of miR-22 and miR-135a may promote the apoptosis of pancreatic acinar cells by repressing ErbB3 and Ptk2 expression in AEP.
    Journal of Huazhong University of Science and Technology 04/2014; 34(2):225-33. · 0.78 Impact Factor