VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation.

Center for Muscle Biology, Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA.
AJP Cell Physiology (Impact Factor: 3.71). 05/2012; 303(4):C396-405. DOI: 10.1152/ajpcell.00014.2012
Source: PubMed

ABSTRACT 1α,25(OH)(2)D(3), the active form of vitamin D(3), has been reported to regulate the cell biology of skeletal muscle. However, there has been some controversy about the expression of the vitamin D receptor (VDR) and thus the potential role of vitamin D(3) in skeletal muscle. In this study, we isolated and sequenced the full-length Vdr and Cyp27b1 transcripts in C2C12 myoblasts and myotubes. Western blots and immunocytochemistry confirmed protein expression in both myoblasts and myotubes clearly demonstrating that C2C12 cells express VDR and CYP27B1. To determine the vitamin D(3) action, we found that C2C12 myoblasts treated with either 1α,25(OH)(2)D(3) or 25(OH)D(3) inhibited cell proliferation and this was associated with increased Vdr expression. The observation that treatment of C2C12 myoblasts with the inactive form of vitamin D(3), [25(OH)D(3)], inhibited proliferation suggested that CYP27B1 was functionally active. We used small interfering RNA to knock down Cyp27b1 in myoblasts, and cells were treated with 25(OH)D(3). The growth-suppressive effects of 25(OH)D(3) were abolished, suggesting that CYP27B1 in myoblasts is necessary for the ability of 25(OH)D(3) to affect cell proliferation. Finally, we analyzed expression of VDR and CYP27B1 in regenerating skeletal muscle in vivo. We found that expression of VDR and CYP27B1 increased significantly at day 7 of regeneration, and these results confirm the expression of Vdr and Cyp27b1 in vivo and suggest a potential role for vitamin D(3) in skeletal muscle regeneration following injury.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D receptor (VDR) expression and action in non-human skeletal muscle have recently been reported in several studies, yet data on the activity and expression of VDR in human muscle cells are scarce. We conducted a series of studies to examine the (1) effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on VDR gene expression in human primary myoblasts, (2) effect of 16-week supplementation with vitamin D3 on intramuscular VDR gene expression in older women, and (3) association between serum 25-hydroxyvitamin D (25OHD) and intramuscular VDR protein concentration in older adults. Human primary myoblasts were treated with increasing concentrations of 1,25(OH)2D3 for 18 h. A dose-dependent treatment effect was noted with 1 nmol/L of 1,25OH2D3 increasing intramuscular VDR mRNA expression (mean fold change ± SD 1.36 ± 0.33; P = 0.05). Muscle biopsies were obtained at baseline and 16 weeks after vitamin D3 supplementation (4,000 IU/day) in older adults. Intramuscular VDR mRNA was significantly different from placebo after 16 weeks of vitamin D3 (1.2 ± 0.99; -3.2 ± 1.7, respectively; P = 0.04). Serum 25OHD and intramuscular VDR protein expression were examined by immunoblot. 25OHD was associated with intramuscular VDR protein concentration (R = 0.67; P = 0.0028). In summary, our study found VDR gene expression increases following treatment with 1,25OH2D3 in human myoblasts. 25OHD is associated with VDR protein and 16 weeks of supplementation with vitamin D3 resulted in a persistent increase in VDR gene expression of vitamin D3 in muscle tissue biopsies. These findings suggest treatment with vitamin D compounds results in sustained increases in VDR in human skeletal muscle.
    Calcified Tissue International 12/2014; · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Interest in Vitamin D has risen considerably recently with many athletes now advised to take daily vitamin D supplements. The reason for this interest is partly not only attributed to the resurgence of the Vitamin D-deficient disease rickets but also due to the discovery of a Vitamin D receptor in many tissues suggesting a more global role for Vitamin D than previously considered. Unlike the other vitamins that are obtained through the diet, Vitamin D is unique since endogenous synthesis following ultraviolet B (UVB) exposure is the predominant route of entry into systemic circulation. Moreover, Vitamin D could be better classed as a seco-steroid, given that its structure is similar to that of a steroid, and its production is derived from a cholesterol precursor (7-dehydrocholesteol) in the skin. The classification of Vitamin D status is currently subject to considerable debate with many authors opposing governing body recommendations. Regardless of the suggested optimal concentration, there is now growing evidence to suggest that many athletes are in fact Vitamin D deficient, especially in the winter months largely as a consequence of inadequate sun exposure, combined with poor dietary practices, although the consequences of such deficiencies are still unclear in athletic populations. Impaired muscle function and reduced regenerative capacity, impaired immune function, poor bone health and even impaired cardiovascular function have all been associated with low Vitamin D in athletes, however, to date, the majority of studies on Vitamin D have described associations and much more research is now needed examining causation.
    European Journal of Sport Science 08/2014; · 1.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle mass and strength progressively decrease with age, which results in a condition known as sarcopenia. Sarcopenia would lead to physical disability, poor quality of life, and death. Therefore, much is expected of an effective intervention for sarcopenia. Epidemiologic, clinical, and laboratory evidence suggest an effect of vitamin D on muscle function. However, the precise molecular and cellular mechanisms remain to be elucidated. Recent studies suggest that vitamin D receptor (VDR) might be expressed in muscle fibers and vitamin D signaling via VDR plays a role in the regulation of myoblast proliferation and differentiation. Understanding how vitamin D signaling contributes to myogenesis will provide a valuable insight into an effective nutritional strategy to moderate sarcopenia. Here we will summarize the current knowledge about the effect of vitamin D on skeletal muscle and myogenic cells and discuss the potential for treatment of sarcopenia.
    BioMed Research International 01/2014; 2014:121254. · 2.71 Impact Factor