Article

Assessing apical transportation in curved canals: comparison between cross-sections and micro-computed tomography.

Department of Esthetic Dentistry, School of Dentistry, University of São Paulo, Brazil.
Brazilian oral research (Impact Factor: 0.77). 06/2012; 26(3):222-7. DOI: 10.1590/S1806-83242012000300007
Source: PubMed

ABSTRACT The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (µCT). Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections), teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (µCT), teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF) system (SybronEndo, Orange, USA), and mesiolingual canals, with the EndoSequence (ES) system (Brasseler, Savannah, USA). Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05). The canal transportation results were significantly lower (0.056 mm) in G2 than in G1 (0.089 mm) (p = 0.0012). The µCT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.

Full-text

Available from: Rodrigo Sanches Cunha, Jul 24, 2014
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the ability of the Twisted File Adaptive (TF Adaptive; SybronEndo, Orange, CA) system in maintaining the original profile of root canal anatomy. The ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) and Twisted File (TF) (SybronEndo) systems were used as reference techniques for comparison. Thirty simulated curved root canals manufactured in clear resin blocks were randomly assigned to 3 groups (n = 10) according to the instrumentation system: TF in rotary motion, TF in TF Adaptive motion, and ProTaper Universal. Color stereomicroscopic images from each block were taken exactly at the same position before and after instrumentation. All image processing and data analysis were performed with an open-source program (Fiji). Evaluation of canal transportation was obtained for 2 independent canal regions: straight and curved levels. Univariate analysis of variance and Tukey Honestly Significant Difference were used, and a cutoff for significance was set at alpha = 5%. Instrumentation systems significantly influenced canal transportation (P = .000). A significant interaction between instrumentation system and root canal level (P = .000) was also found as follows: at the straight part, TF and TF Adaptive systems produced similar canal transportation, which was significantly lower than for the ProTaper Universal system; at the curved part, TF resulted in the lowest canal transportation followed by TF Adaptive and ProTaper Universal systems. Canal transportation was higher at the curved canal parts (P = .00). The TF in rotary motion produced overall less canal transportation in the curved portion when compared with the others tested systems. The ProTaper Universal system showed the highest canal transportation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
    Journal of endodontics 04/2015; DOI:10.1016/j.joen.2015.02.028 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: This study evaluated apical transportation associated with ProTaper® Universal Fl, F2 and F3 rotary files in curved canais prepared by undergraduate students. Material and Methods: Twenty mesial roots of mandibular molars with curvatures ranging between 25° and 35° were selected. Mesiobuccal canals were instrumented by twenty students with the ProTaper® system (Dentsply-Maillefer, Ballaigues, Switzerland) according to the manufacturer's instructions. Pre-fiaring was performed with Sl and SX files. A #15 K-file was inserted into the root canal up to the working length (WL), and an initial digital radiograph was taken in a buccolingual direction (baseline). Afterwards, the S1, S2, F1, F2, and F3 files were employed up to the WL. Other radiographies were taken in the same orientation of the baseline after the use of the Fl, F2, and F3 files, with each file inserted into the root canal. The radiographic images were overlapped, and the Image J software was used to measure the distance between the rotary files' ends and the #15 K-file's end, characterizing the apical transportation. Data were analyzed by Repeated Measure ANOVA and by the SNK post hoc test (P<0.05). Results: It was verified that file size affected apical transportation significantly (P<0.001). The F3 file showed higher apical transportation than Fl and F2, while between these last files there was no difference. Conclusion: The undergraduate students produced lower apical transportation in curved canals when they did not use the F3 rotary file.
    Journal of applied oral science: revista FOB 04/2014; 22(2):98-102. DOI:10.1590/1678-775720130464 · 0.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to use high-resolution micro-CT to evaluate the effects of three Ni-Ti rotary endodontic instruments, Mtwo(®) (VDW, München, Germany), ProTaper(®) (Dentsply-Maillefer, Ballaigues, Switzerland) and Revo-S™ (MicroMega, Besançon, France), on canal transportation and centring ratio. Fifty-four mesial roots of extracted mandibular molars with an angle of curvature of 25-35° were randomly divided into three groups of eighteen. Each group was instrumented with a previously unused Ni-Ti rotary system. The final instruments used were #30/0.05 taper (Mtwo(®)), F3 #30/0.09 apical taper (ProTaper(®)) and AS30 #30/0.06 taper (Revo-S™). Teeth were scanned before and after instrumentation using micro-computed tomography with a spatial resolution of 20 μm to measure volume and shaping changes. All images were filtered to improve signal-to-noise ratio. To determine the perimeter of roots and canals exactly, images were segmented in each slice with an edge detection process. Canal transportation and centring ratio were evaluated at 1, 3, 5 and 7 mm from the end of each root. The method developed by Gambill et al. was chosen. ANOVA was conducted with the significance threshold set at p < 0.05. No statistically significant differences were found among the three groups in terms of canal transportation or centring ratio at any level. These systems give similar results with regard to the tested shaping parameters. Under the tested conditions and within the limitations of this study, these systems were able to produce centred preparations of curved canals with minimal transportation.
    Odontology 09/2014; DOI:10.1007/s10266-014-0176-z · 1.35 Impact Factor