• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B cell acute lymphoblastic leukemia (B-ALL) is the most common hematological malignancy diagnosed in children, and blockade of the abnormally activated PI3Kδ displayed promising outcomes in B cell acute or chronic leukemias, but the mechanisms are not well understood. Here we report a novel PI3Kδ selective inhibitor X-370, which displays distinct binding mode with p110δ and blocks constitutively active or stimulus-induced PI3Kδ signaling. X-370 significantly inhibited survival of human B cell leukemia cells in vitro, with associated induction of G1 phase arrest and apoptosis. X-370 abrogated both Akt and Erk1/2 signaling via blockade of PDK1 binding to and/or phosphorylation of MEK1/2. Forced expression of a constitutively active MEK1 attenuated the antiproliferative activity of X-370. X-370 preferentially inhibited the survival of primary pediatric B-ALL cells displaying PI3Kδ-dependent Erk1/2 phosphorylation, while combined inhibition of PI3Kδ and MEK1/2 displayed enhanced activity. We conclude that PI3Kδ inhibition led to abrogation of both Akt and Erk1/2 signaling via a novel PI3K-PDK1/MEK1/2-Erk1/2 signaling cascade, which contributed to its efficacy against B-ALL. These findings support the rationale for clinical testing of PI3Kδ inhibitors in pediatric B-ALL and provide insights needed to optimize the therapeutic strategy.
    Oncotarget 09/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past 2 decades have witnessed a revolution in the management of childhood brain tumors, with the establishment of multidisciplinary teams and national and international consortiums that led to significant improvements in the outcomes of children with brain tumors. Unprecedented cooperation within the pediatric neuro-oncology community and sophisticated rapidly evolving technology have led to advances that are likely to revolutionize treatment strategies and improve outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.
    Pediatric Clinics of North America 02/2015; 62(1):167-178. DOI:10.1016/j.pcl.2014.09.011 · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study describes the recent advances in the identification of targetable genomic alterations in pediatric cancers, along with the progress and associated challenges in translating these findings into therapeutic benefit. Each field within pediatric cancer has rapidly and comprehensively begun to define genomic targets in tumors that potentially can improve the clinical outcome of patients, including hematologic malignancies (leukemia and lymphoma), solid malignancies (neuroblastoma, rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma), and brain tumors (gliomas, ependymomas, and medulloblastomas). Although each tumor has specific and sometimes overlapping genomic targets, the translation to the clinic of new targeted trials and precision medicine protocols is still in its infancy. The first clinical tumor profiling studies in pediatric oncology have demonstrated the feasibility and patient enthusiasm for the personalized medicine paradigm, but have yet to demonstrate clinical utility. Complexities influencing implementation include rapidly evolving sequencing technologies, tumor heterogeneity, and lack of access to targeted therapies. The return of incidental findings from the germline also remains a challenge, with evolving policy statements and accepted standards. The translation of genomic discoveries to the clinic in pediatric oncology continues to move forward at a brisk pace. Early adoption of genomics for tumor classification, risk stratification, and initial trials of targeted therapeutic agents has led to powerful results. As our experience grows in the integration of genomic and clinical medicine, the outcome for children with cancer should continue to improve.
    Current Opinion in Pediatrics 12/2014; 27(1). DOI:10.1097/MOP.0000000000000172 · 2.74 Impact Factor


1 Download
Available from