The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning

Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico, and Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico.
The Plant Journal (Impact Factor: 5.97). 05/2012; 72(2):222-234. DOI: 10.1111/j.1365-313X.2012.05062.x
Source: PubMed


Cytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.

Download full-text


Available from: Stefan De Folter,
  • Source
    • "Recently, there is increased interest in gynoecium development, especially in the characterization of GFP fluorescence of gene fusions or marker lines (e.g., Girin et al., 2011; Marsch-Martinez et al., 2012; Larsson et al., 2014; Martinez-Fernandez et al., 2014; Moubayidin and Ostergaard, 2014; Zuniga-Mayo et al., 2014). However, fluorescence "
    [Show abstract] [Hide abstract]
    ABSTRACT: The gynoecium is the female reproductive structure and probably the most complex plant structure. During its development different internal tissues and structures are formed. Insights in gene expression or hormone localization patterns are key to understanding gynoecium development from a molecular biology point of view. Imaging with a confocal laser scanning microscope (CLSM) is a widely used strategy; however, visualization of internal developmental expression patterns in the Arabidopsis gynoecium can be technically challenging. Here, we present a detailed protocol that allows the visualization of internal expression patterns at high resolution during gynoecium development. We demonstrate the applicability using a cytokinin response marker (TCS::GFP), an auxin response marker (DR5::VENUS), and a SEPALLATA3 marker (SEP3::SEP3:GFP). The detailed protocol presented here allows the visualization of fluorescence signals in internal structures during Arabidopsis gynoecium development. This protocol may also be adapted for imaging other challenging plant structures or organs. This article is protected by copyright. All rights reserved. © 2015 Wiley Periodicals, Inc.
    Developmental Dynamics 07/2015; 244(10). DOI:10.1002/dvdy.24301 · 2.38 Impact Factor
  • Source
    • "The differentiation of the DZ is under the control of intricate regulatory networks involving multiple transcription factors. Recent investigations in pod dehiscence regulation have uncovered another layer of the regulatory network that include phytohormones in specifying the DZs (Sorefan et al., 2009; Arnaud et al., 2010; Marsch-Martinez et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the genetic contributors that are involved in the complex regulatory network in the establishment of abscission cell identity. We summarize the recent burgeoning progress in the field of genetic regulation of pod dehiscence and fruit shedding, focusing mainly on the model species A. thaliana with its close relatives and the fleshy fruit species tomato, as well as the genetic basis responsible for the parallel loss of seed shattering in domesticated crops. This review shows how these individual genes are co-opted in the developmental process of the tissues that guarantee seed shattering. Research into the genetic mechanism underlying seed shattering provides a premier prerequisite for the future breeding program for harvest in crops.
    Frontiers in Plant Science 06/2015; 6:476. DOI:10.3389/fpls.2015.00476 · 3.95 Impact Factor
  • Source
    • "The Nemhauser model has been very useful to frame the role of different players in Arabidopsis carpel development, but conclusive proof of the proposed auxin gradient has never been obtained. Actually, detailed descriptions of auxin accumulation throughout gynoecium development using a DR5rev::GFP reporter have shown that auxin maxima are formed in the apical domain, first as isolated foci and later as a continuous apical ring, while the proposed gradient cannot be observed (Girin et al., 2011; Marsch-Martinez et al., 2012a; Larsson et al., 2013). In addition, several recent studies indicate that the dynamics of auxin accumulation, homeostasis and response within the developing gynoecium are highly complex and we are still far from fully comprehending how positional information is translated into developmental outputs in gynoecium differentiation (Sohlberg et al., 2006; Ståldal et al., 2008; Ståldal and Sundberg, 2009; Marsch-Martinez et al., 2012b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants, and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium. We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.
    Frontiers in Plant Science 05/2014; 5. DOI:10.3389/fpls.2014.00210 · 3.95 Impact Factor
Show more