The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning.

Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico, and Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico.
The Plant Journal (Impact Factor: 6.82). 05/2012; 72(2):222-234. DOI: 10.1111/j.1365-313X.2012.05062.x
Source: PubMed

ABSTRACT Cytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.

Download full-text


Available from: Stefan De Folter, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proper development of fruits is important for the sexual reproduction and propagation of many plant species. The fruit of Arabidopsis derives from the fertilized gynoecium, which initiates at the center of the flower and obtains its final shape, size, and functional organs through progressive stages of development. Hormones, specially auxins, play important roles in gynoecium and fruit patterning. Cytokinins, which act as counterparts to auxins in other plant tissues, have been studied more in the context of ovule formation, and parthenocarpy. We recently studied the role of cytokinins in gynoecium and fruit patterning and found that they have more than one role during gynoecium and fruit patterning. We also compared the cytokinin response localization to the auxin response localization in these organs, and studied the effects of spraying cytokinins in young flowers of an auxin response line. In this addendum, we discuss further the implications of the observed results in the knowledge about the relationship between cytokinins and auxins at the gynoecium.
    Plant signaling & behavior 10/2012; 7(12). DOI:10.4161/psb.22422
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytokinins are classic plant hormones that orchestrate plant growth, development, and physiology. They affect gene expression in target cells by activating a multistep phosphorelay network. Type-B response regulators, acting as transcriptional activators, mediate the final step in the signaling cascade. Previously, we have introduced a synthetic reporter, TCS (Two Component signaling Sensor)::GFP, which reflects the transcriptional activity of type-B response regulators. TCS::GFP was instrumental in uncovering novel roles of cytokinin, and deepening our undestanding of existing functions. However, TCS-mediated expression of reporters is weak in some developmental contexts, where cytokinin signaling has a documented role, such as in the shoot apical meristem, or in the vasculature of Arabidopsis thaliana. In addition, we observed that GFP expression becomes rapidly silenced in TCS::GFP transgenic plants. Here, we present an improved version of the reporter, TCS new (TCSn), which, compared to TCS, is more sensitive to phosphorelay signaling in Arabidopsis and maize cellular assays, while retaining its specificity. Transgenic Arabidopsis TCSn::GFP plants exhibit strong and dynamic GFP expression patterns consistent with known cytokinin functions. In addition, GFP expression has been stable over generations, allowing crosses with different genetic backgrounds. Thus, TCSn represents a significant improvement to report the transcriptional output profile of phosphorelay signaling networks in Arabidopsis, maize, and likely other plants that display common response regulator DNA-binding specificities.
    Plant physiology 01/2013; DOI:10.1104/pp.112.211763 · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination.Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.
    American Journal of Botany 03/2013; 100(6). DOI:10.3732/ajb.1200544 · 2.46 Impact Factor