Rifampicin-resistant Mycobacterium tuberculosis: susceptibility to isoniazid and other anti-tuberculosis drugs

Kurbatova, International Research and Programs Branch, Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
The International Journal of Tuberculosis and Lung Disease (Impact Factor: 2.76). 03/2012; 16(3):355-7. DOI: 10.5588/ijtld.11.0542
Source: PubMed

ABSTRACT Based on data from 14 Supranational Tuberculosis (TB) Reference Laboratories worldwide, the proportion of rifampicin (RMP) resistant isolates that were isoniazid (INH) susceptible by phenotypic drug susceptibility testing varied widely (0.5-11.6%). RMP-resistant isolates that were INH-susceptible had significantly lower rates of resistance to other first- and second-line anti-tuberculosis drugs (except rifabutin) compared to multidrug-resistant isolates. RMP resistance is not always a good proxy for a presumptive diagnosis of multidrug-resistant TB, which has implications for use of molecular assays that identify only RMP resistance-associated DNA mutations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Steadily growing resistance of the tuberculosis causative agent towards a broad spectrum of antituberculosis drugs calls for rapid and reliable methods for identifying the genetic determinants responsible for this resistance. In this study, we present a biochip-based method for simultaneous identification of mutations within rpoB gene associated with rifampin resistance, mutations in katG, inhA, ahpC genes responsible for isoniazid resistance, mutations within the regions of gyrA and gyrB genes leading to fluoroquinolones resistance, and mutations in the rrs gene and the eis promoter region associated with the resistance to kanamycin, capreomycin and amikacin. The oligonucleotide microchip, as the core element of this assay, provides simultaneous identification of 99 mutations in the format “one sample—one PCR—one microchip”, and it makes it possible to complete analysis of multidrug-resistant and extensively drug-resistant tuberculosis within a single day. The tests on 63 Mycobacterium tuberculosis clinical isolates with different resistance profiles using the developed approach allows us to reveal the spectrum of drug-resistance associated mutations, and to estimate the significance of the inclusion of extra genetic loci in the determination of M. tuberculosis drug resistance.
    Molecular Biology 03/2014; 48(2-2):214-226. DOI:10.1134/S0026893314020186 · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lack of capacity to provide laboratory confirmation of a diagnosis of tuberculosis disease (TB) is contributing to enormous gaps in the ability to find, treat and follow TB patients. WHO estimates that globally only about 57% of the notified new cases of pulmonary TB in 2012 and about 19% of rifampicin-resistant TB cases were laboratory confirmed. The Cepheid Xpert(®) MTB/RIF assay has been credited with revolutionizing laboratory testing to aid in the diagnosis of TB and rifampicin-resistant TB. This semi-automated test can detect both the causative agent of TB and mutations that confer rifampicin resistance from clinical specimens within 2 h after starting the test. In this article, we review the performance of the test, its pathway to regulatory approval and endorsement, guidelines for its use and lessons learned from the implementation of the test in low-burden, high-resource countries and in high-burden, low-resource countries.
    Expert Review of Molecular Diagnostics 11/2014; 15(1):1-14. DOI:10.1586/14737159.2015.976556 · 4.27 Impact Factor
  • Enfermedades Infecciosas y Microbiología Clínica 04/2013; · 1.88 Impact Factor