Article

The Spliceosome-Activating Complex: Molecular Mechanisms Underlying the Function of a Pleiotropic Regulator

Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research Cologne, Germany.
Frontiers in Plant Science (Impact Factor: 3.64). 01/2012; 3:9. DOI: 10.3389/fpls.2012.00009
Source: PubMed

ABSTRACT Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.

0 Bookmarks
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During Drosophila oogenesis, the endopolyploid nuclei of germ-line nurse cells undergo a dramatic shift in morphology as oogenesis progresses; the easily-visible chromosomes are initially polytenic during the early stages of oogenesis before they transiently condense into a distinct '5-blob' configuration, with subsequent dispersal into a diffuse state. Mutations in many genes, with diverse cellular functions, can affect the ability of nurse cells to fully decondense their chromatin, resulting in a '5-blob arrest' phenotype that is maintained throughout the later stages of oogenesis. However, the mechanisms and significance of nurse-cell (NC) chromatin dispersal remain poorly understood. Here, we report that a screen for modifiers of the 5-blob phenotype in the germ line isolated the spliceosomal gene peanuts, the Drosophila Prp22. We demonstrate that reduction of spliceosomal activity through loss of peanuts promotes decondensation defects in NC nuclei during mid-oogenesis. We also show that the Prp38 spliceosomal protein accumulates in the nucleoplasm of nurse cells with impaired peanuts function, suggesting that spliceosomal recycling is impaired. Finally, we reveal that loss of additional spliceosomal proteins impairs the full decondensation of NC chromatin during later stages of oogenesis, suggesting that individual spliceosomal subcomplexes modulate expression of the distinct subset of genes that are required for correct morphology in endopolyploid nurse cells.
    PLoS ONE 11/2013; 8(11):e79048. DOI:10.1371/journal.pone.0079048 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking.
    PLoS Genetics 01/2014; 10(1):e1004046. DOI:10.1371/journal.pgen.1004046 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways.
    Proceedings of the National Academy of Sciences 10/2014; 111(42). DOI:10.1073/pnas.1409791111 · 9.81 Impact Factor

Full-text (2 Sources)

Download
73 Downloads
Available from
May 28, 2014