Article

Glucose depletion activates mmu-miR-466h-5p expression through oxidative stress and inhibition of histone deacetylation.

Biotechnology Core Laboratory National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health Bldg 14A Bethesda, MD 20892, USA.
Nucleic Acids Research (Impact Factor: 8.81). 05/2012; 40(15):7291-302. DOI: 10.1093/nar/gks452
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are involved in the regulation of multiple cellular processes. Changes of miRNA expression have been linked to the development of various diseases including cancer, but the molecular events leading to these changes at different physiological conditions are not well characterized. Here we examined the intracellular events responsible for the miR-466h-5p activation in mouse cells exposed to glucose deprivation. MiR-466h-5p is a member of the miR-297-669 cluster located in intron 10 of Sfmbt2 gene on mouse chromosome 2 and has a pro-apoptotic role. We showed that the time-dependant activation of miR-466h-5p, miR-669c and the Sfmbt2 gene followed the inhibition of histone deacetylation caused by glucose deprivation-induced oxidative stress. This oxidative stress causes the accumulation of reactive oxygen species (ROS) and depletion of reduced glutathione (GSH) that together inhibited histone deacetylases (HDACs) activity, reduced protein levels of HDAC2 and increased acetylation in miR-466h-5p promoter region, which led to the activation of this miRNA. Based on this study and previous work, we suggest a possible role of miR-466h-5p (and miR 297-669 cluster) in the cells during toxic metabolites accumulation. Improved characterization of the molecular events that lead to the activation of miR-466h-5p may provide a better understanding of the relation between cellular environment and miRNA activation.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed at elucidating how Coxsackie B virus (CVB) perturbs the host's microRNA (miRNA) regulatory pathways that lead to antiviral events. The results of miRNA profiling in rat pancreatic cells infection models revealed that rat rno-miR-466d was up-regulated in CVB infection. Furthermore, in silico studies showed that Coxsackie virus and Adenovirus Receptor (CAR), a cellular receptor, was one of the rno-miR-466d targets involved in viral entry. Subsequent experiments also proved that both the rno-miR-466d and the human hsa-miR-466, which are orthologs of the miR-467 gene family, could effectively down-regulate the levels of rat and human CAR protein expression, respectively. Copyright © 2014. Published by Elsevier B.V.
    FEBS Letters 12/2014; · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress.
    PLoS ONE 08/2014; 9(8):e106277. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Lymphangiogenesis is one of the major causes of corneal graft rejection. Among the lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and -D are considered to be the most potent. Both bind to VEGF receptor 3 (VEGFR3) to activate Prospero homeobox 1 (Prox1), a transcription factor essential for the development and maintenance of lymphatic vasculature. MicroRNAs (miRNAs) bind to the 3' untranslated regions (3' UTRs) of target genes in a sequence-specific manner and suppress gene expression. In the current study, we searched for miRNAs that target the pro-lymphangiogenic factor Prox1.ResultsAmong the miRNAs predicted by the bioinformatic analysis to seed match with the 3' UTR of Prox-1, we chose 3 (miR-466, miR-4305, and miR-4795-5p) for further investigation. Both the miR-466 and miR-4305 mimics, but not the miR-4795-5p mimic, significantly reduced the luciferase activity of the Prox-1 3' UTR reporter vector. In primary lymphatic endothelial cells (HDLEC), miR-466 mimic transfection suppressed Prox1 mRNA and protein expression, while miR-4305 mimic transfection did not. Experiments using mutated reporter constructs of the two possible seed match sites on the 3' UTR of Prox1 suggested that the target site 2 directly bound miR-466. HDLEC transfected with the miR-466 mimic suppressed tube formation as compared to the scrambled control. Furthermore, HDLEC transfected with a miR-466 inhibitor showed enhanced tube formation as compared to control inhibitor transfected cells, and this inhibitory effect was counteracted by Prox1 siRNA. The miR-466 mimic reduced angiogenesis and lymphangiogenesis resulting in clearer corneas in an cornea injury rat model compared to the scrambled control.Conclusions Our data suggest that miR-446 may have a protective effect on transplanted corneas by suppressing Prox1 expression at the post-transcriptional level. The results of the current study may provide insights into the mechanisms of lymphangiogenesis resulting from corneal graft rejection and alkali-burn injuries, as well as into the development of new treatments for lymphangiogenic eye diseases.
    Journal of biomedical science. 01/2015; 22(1):3.

Full-text (2 Sources)

Download
6 Downloads
Available from
Nov 21, 2014