Genome-wide gene-environment interaction analysis for asbestos exposure in lung cancer susceptibility.

Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.
Carcinogenesis (Impact Factor: 5.27). 05/2012; 33(8):1531-7. DOI: 10.1093/carcin/bgs188
Source: PubMed

ABSTRACT Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene-environment interactions. To determine gene-asbestos interactions in lung cancer risk, we conducted genome-wide gene-environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10(-6), which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10(-5)). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene-asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity, a major public health concern, is a multifactorial disease caused by both environmental and genetic factors. Although recent genome-wide association studies have identified many loci related to obesity or body mass index, the identified variants explain only a small proportion of the heritability of obesity. Better understanding of the interplay between genetic and environmental factors is the basis for developing effective personalized obesity prevention and management strategies. This article reviews recent advances in identifying gene-environment interactions related to obesity and describes epidemiological designs and newly developed statistical approaches to characterizing and discovering gene-environment interactions on obesity risk.
    BMC Medical Genomics 12/2015; 8(1):530. DOI:10.1186/1755-8794-8-S1-S2 · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some association studies, as the implemented in VEGAS, ALIGATOR, i-GSEA4GWAS, GSA-SNP and other software tools, use genes as the unit of analysis. These genes include the coding sequence plus flanking sequences. Polymorphisms in the flanking sequences are of interest because they involve cis-regulatory elements or they inform on untyped genetic variants trough linkage disequilibrium. Gene extensions have customarily been defined as +/- 50 Kb. This approach is not fully satisfactory because genetic relationships between neighbouring sequences are a function of genetic distances, which are only poorly replaced by physical distances.
    BMC Genomics 05/2014; 15(1):408. DOI:10.1186/1471-2164-15-408 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies revealed that allelic variation in the α5-α3-β4 nicotine acetylcholine receptor (nAChR) cluster on chromosome 15q24-15q25.1 was associated with lung cancer risk. nAChRs are membrane ligand-gated cation channels whose activation is triggered by the binding of the endogenous neurotransmitter acetylcholine (ACh) or other biologic compounds including nicotine. nAChRs have been found on lung cancer cells, underscoring the idea that the non-neuronal nAChR pathway has important implications for lung cancer. Several studies focusing on the treatment with nAChR antagonists with improved selectivity might trigger novel strategies for the intervention and prevention of lung cancer. Here we review the genetic risk factors for lung cancer in the nAChR gene cluster, the roles of nicotine receptors, and the molecular mechanisms of acetylcholine receptor pathways to lead to more opportunities for intervention and prevention of lung cancer.
    10/2014; 5(4):667-76. DOI:10.5306/wjco.v5.i4.667