Common substrate for mental arithmetic and finger representation in the parietal cortex

Institut de Recherche en Sciences Psychologiques, Université catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
NeuroImage (Impact Factor: 6.13). 05/2012; 62(3):1520-8. DOI: 10.1016/j.neuroimage.2012.05.047
Source: PubMed

ABSTRACT The history of mathematics provides several examples of the use of fingers to count or calculate. These observations converge with developmental data showing that fingers play a critical role in the acquisition of arithmetic knowledge. Further studies evidenced specific interference of finger movements with arithmetic problem solving in adults, raising the question of whether or not finger and number manipulations rely on common brain areas. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the possible overlap between the brain areas involved in mental arithmetic and those involved in finger discrimination. Solving subtraction and multiplication problems was found to increase cerebral activation bilaterally in the horizontal part of the intraparietal sulcus (hIPS) and in the posterior part of the superior parietal lobule (PSPL). Finger discrimination was associated with increased activity in a bilateral occipito-parieto-precentral network extending from the extrastriate body area to the primary somatosensory and motor cortices. A conjunction analysis showed common areas for mental arithmetic and finger representation in the hIPS and PSPL bilaterally. Voxelwise correlations further showed that finger discrimination and mental arithmetic induced a similar pattern of activity within the parietal areas only. Pattern similarity was more important for the left than for the right hIPS and for subtraction than for multiplication. These findings provide the first evidence that the brain circuits involved in finger representation also underlie arithmetic operations in adults.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mastering single-digit arithmetic during school years is commonly thought to depend upon an increasing reliance on verbally memorized facts. An alternative model, however, posits that fluency in single-digit arithmetic might also be achieved via the increasing use of efficient calculation procedures. To test between these hypotheses, we used a cross-sectional design to measure the neural activity associated with single-digit subtraction and multiplication in 34 children from 2nd to 7th grade. The neural correlates of language and numerical processing were also identified in each child via localizer scans. Although multiplication and subtraction were undistinguishable in terms of behavior, we found a striking developmental dissociation in their neural correlates. First, we observed grade-related increases of activity for multiplication, but not for subtraction, in a language-related region of the left temporal cortex. Second, we found grade-related increases of activity for subtraction, but not for multiplication, in a region of the right parietal cortex involved in the procedural manipulation of numerical quantities. The present results suggest that fluency in simple arithmetic in children may be achieved by both increasing reliance on verbal retrieval and by greater use of efficient quantity-based procedures, depending on the operation.
    Developmental Science 07/2014; 17(4):537-52. DOI:10.1111/desc.12140 · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The term "cultural recycling" derives from the neuronal recycling hypothesis, which suggests that representations of cultural inventions like written words, Arabic numbers, or tools can occupy brain areas dedicated to other functions. In the present selective review article, we propose a recycling hypothesis for the ideomotor mechanism. The ideomotor approach assumes that motor actions are controlled by the anticipation of the expected perceptual consequences that they aim to generate in the environment. Arguably, such action-perception mechanisms contribute to motor behaviour for human and non-human animals since millions of years. However, recent empirical studies suggest that the ideomotor mechanism can also contribute to word processing, number representation, and arithmetic. For instance, it has been shown that the anticipatory simulation of abstract semantics, like the numerical quantitative value of three items can prime processing of the associated Arabic number "3". Arabic numbers, words, or tools represent cultural inventions, so that, from a theoretical perspective, we suggest an ideomotor recycling hypothesis for the interaction with such artefacts. In this view, the ideomotor mechanism spreads its influence to other functions beyond motor control, and is recycled to flexibly adapt different human behaviours towards dealing with more abstract concepts.
    Psychological Research 12/2014; DOI:10.1007/s00426-014-0643-8 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
    Frontiers in Psychology 03/2015; 6. DOI:10.3389/fpsyg.2015.00226 · 2.80 Impact Factor


Available from
May 26, 2014