Article

MAGE-A antigens as targets in tumour therapy.

Division of Cancer Research, Medical Research Institute, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom.
Cancer letters (Impact Factor: 5.02). 05/2012; 324(2):126-32. DOI: 10.1016/j.canlet.2012.05.011
Source: PubMed

ABSTRACT MAGE-A proteins constitute a sub-family of Cancer-Testis Antigens which are expressed mainly, but not exclusively, in germ cells. They are also expressed in various human cancers where they are associated with, and may drive, malignancy. MAGE-A proteins are highly immunogenic and are considered as potential targets for cancer vaccines and/or immuno-therapy. Moreover, recent advances in our understanding of their molecular pathology have revealed interactions that offer potential as therapeutic targets. Here we review recent progress in this area and consider how these interactions might be exploited, especially for the treatment of malignant cancers for which available treatments are inadequate.

0 Bookmarks
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.
    Molecular Biology Reports 02/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the beginning of the 20(th) century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy.
    New journal of science. 01/2014; 2014.
  • [Show abstract] [Hide abstract]
    ABSTRACT: MAGE-A3 is highly expressed in epithelial ovarian cancer (EOC), making it a promising candidate for immunotherapy. We investigated whether dendritic cells (DCs) transduced with a rAAV-6 capsid mutant vector Y445F could elicit effective MAGE-A3-specific anti-tumor cytotoxic T lymphocyte (CTL) responses in vitro. MAGE-A3 was cloned and rAAV-6-MAGE-A3 purified, followed by proviral genome detection using real-time PCR. Immunofluorescence detection of rAAV-6-Y445F-MAGE-A3-transduced DCs demonstrated 60% transduction efficiency. Fluorescent in situ hybridization analysis confirmed chromosomal integration of rAAV vectors. Flow cytometric analysis of transduced DCs showed unaltered expression of critical monocyte-derived surface molecules with retention of allo-stimulatory activity. Co-culture of autologous T lymphocytes with MAGE-A3-expressing DCs produced CTLs that secreted IFN-γ, and efficiently killed MAGE-A3+ EOC cells. This form of rAAV-based DC immunotherapy, either alone or more likely in combination with other immune-enhancing protocols, may prove useful in the clinical setting for management of EOC.
    Vaccine 01/2014; · 3.77 Impact Factor