Article

Functional activation of the infant cortex during object processing

Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
NeuroImage (Impact Factor: 6.13). 05/2012; 62(3):1833-40. DOI: 10.1016/j.neuroimage.2012.05.039
Source: PubMed

ABSTRACT A great deal is known about the functional organization of the neural structures that mediate visual object processing in the adult observer. These findings have contributed significantly to our conceptual models of object recognition and identification and provided unique insight into the nature of object representations extracted from visual input. In contrast, little is known about the neural basis of object processing in the infant. The current research used near-infrared spectroscopy (NIRS) as a neuroimaging tool to investigate functional activation of the infant cortex during an object processing task that has been used extensively with infants. The neuroimaging data revealed that the infant cortex is functionally specialized for object processing (i.e., individuation-by-feature) early in the first year but that patterns of activation also change between 3 and 12 months. These changes may reflect functional reorganization of the immature cortex or age-related differences in the cognitive processes engaged during the task.

0 Followers
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral studies have identified select experiences that can prime infants to attend to color information as the basis for individuating objects prior to the time they do so spontaneously. For example, viewing pretest events in which the color of an object predicts the function in which it will engage leads 9-month-olds (who typically do not attend to color differences) to demonstrate increased sensitivity to color information in a subsequent individuation task (Wilcox & Chapa, 2004). In contrast, viewing pretest events in which the color of an object predicts distinct object motions, but the motions are not functionally relevant, does not produce color priming. The purpose of the present research was to identify the cortical underpinnings of these behavioral effects. Infants aged 8 and 9 months viewed function or motion pretest events and then their capacity to individuate-by-color was assessed in an object individuation task. Behavioral and neuroimaging data were collected. Two main findings emerged. First, as predicted, the infants who viewed the function but not the motion pretest events showed prolonged looking to the test event, a behavioral indicator of object individuation. In addition, they evidenced increased activation in anterior temporal cortex, thought to be a cortical signature of object individuation. A second and unexpected finding was that viewing either type of pretest events led to increased activation in posterior temporal cortex, as compared to infants who did not see pretest events, revealing that prior exposure to the motion pretest events does influence infants' processing of the test event, even though it is not evident in the behavioral results. The cognitive processes involved, and the cortical structures that mediate these processes, are discussed.
    NeuroImage 09/2013; DOI:10.1016/j.neuroimage.2013.08.045 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that, from an early age, human infants interpret the movements of others as actions directed towards goals. However, the cognitive and neural mechanisms which underlie this ability are hotly debated. The current study was designed to identify brain regions involved in the representation of others' goals early in development. Studies with adults have demonstrated that the anterior intraparietal sulcus (aIPS) exhibits repetition suppression for repeated goals and a release from suppression for new goals, implicating this specific region in goal representation in adults. In the current study, we used a modified paired repetition suppression design with 9-month-old infants to identify which cortical regions are suppressed when the infant observes a repeated goal versus a new goal. We find a strikingly similar response pattern and location of activity as had been reported in adults; the only brain region displaying significant repetition suppression for repeated goals and a release from suppression for new goals was the left anterior parietal region. Not only does our data suggest that the left anterior parietal region is specialized for representing the goals of others' actions from early in life, this demonstration presents an opportunity to use this method and design to elucidate the debate over the mechanisms and cues which contribute to early action understanding.
    NeuroImage 01/2013; 85(Pt 1). DOI:10.1016/j.neuroimage.2013.08.043 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A great deal is known about the functional organization of cortical networks that mediate visual object processing in the adult. The current research is part of a growing effort to identify the functional maturation of these pathways in the developing brain. The current research used near-infrared spectroscopy to investigate functional activation of the infant cortex during the processing of featural information (shape) and spatiotemporal information (speed of motion) during the first year of life. Our investigation focused on two areas that were implicated in previous studies: anterior temporal cortex and posterior parietal cortex. Neuroimaging data were collected with 207 infants across three age groups: 3 to 6months (Experiment 1), 7 to 8months (Experiment 2), and 10 to 12months (Experiments 3 and 4). The neuroimaging data revealed age-related changes in patterns of activation to shape and speed information, mostly involving posterior parietal areas, some of which were predicted and others that were not. We suggest that these changes reflect age-related differences in the perceptual and/or cognitive processes engaged during the task.
    NeuroImage 05/2014; 99. DOI:10.1016/j.neuroimage.2014.04.082 · 6.13 Impact Factor

Full-text

Download
75 Downloads
Available from
May 20, 2014