Object processing and functional organization of the infant cortex

Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
NeuroImage (Impact Factor: 6.36). 05/2012; 62(3):1833-40. DOI: 10.1016/j.neuroimage.2012.05.039
Source: PubMed


A great deal is known about the functional organization of the neural structures that mediate visual object processing in the adult observer. These findings have contributed significantly to our conceptual models of object recognition and identification and provided unique insight into the nature of object representations extracted from visual input. In contrast, little is known about the neural basis of object processing in the infant. The current research used near-infrared spectroscopy (NIRS) as a neuroimaging tool to investigate functional activation of the infant cortex during an object processing task that has been used extensively with infants. The neuroimaging data revealed that the infant cortex is functionally specialized for object processing (i.e., individuation-by-feature) early in the first year but that patterns of activation also change between 3 and 12 months. These changes may reflect functional reorganization of the immature cortex or age-related differences in the cognitive processes engaged during the task.

Download full-text


Available from: Teresa Wilcox, Dec 23, 2013
24 Reads
  • Source
    • "com) (Franceschini et al., 2007), for CWNIRS we used a CW6 8 × 8 system made by TechEn, Inc. (Milford, MA, USA, www.techen. com) (Franceschini et al., 2006; Wilcox et al., 2012), and for DCS we used a custom-built device similar to the system developed by Drs. Arjun Yodh and Turgut Durduran at the University of Pennsylvania (Cheung et al., 2001; Durduran et al., 2004; Li et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO(2)). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO(2) estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO(2) during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing brain, and for using this coupling as a reliable functional imaging marker in neonates.
    NeuroImage 01/2013; 85. DOI:10.1016/j.neuroimage.2013.01.035 · 6.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last four decades, a range of different neuroimaging tools have been used to study human auditory attention, spanning from classic event-related potential studies using electroencephalography to modern multimodal imaging approaches (e.g., combining anatomical information based on magnetic resonance imaging with magneto- and electroencephalography). This review begins by exploring the different strengths and limitations inherent to different neuroimaging methods, and then outlines some common behavioral paradigms that have been adopted to study auditory attention. We argue that in order to design a neuroimaging experiment that produces interpretable, unambiguous results, the experimenter must not only have a deep appreciation of the imaging technique employed, but also a sophisticated understanding of perception and behavior. Only with the proper caveats in mind can one begin to infer how the cortex supports a human in solving the "cocktail party" problem.
    Hearing research 07/2013; 307. DOI:10.1016/j.heares.2013.06.010 · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Near infrared spectroscopy (NIRS) is an emerging imaging technique that is relatively inexpensive, portable, and particularly well suited for collecting data in ecological settings. Therefore, it holds promise as a potential neurodiagnostic for young children. We set out to explore whether NIRS could be utilized in assessing the risk of developmental psychopathology in young children. A growing body of work indicates that temperament at young age is associated with vulnerability to psychopathology later on in life. In particular, it has been shown that low effortful control (EC), which includes the focusing and shifting of attention, inhibitory control, perceptual sensitivity, and a low threshold for pleasure, is linked to conditions such as anxiety, depression and attention deficit hyperactivity disorder (ADHD). Physiologically, EC has been linked to a control network spanning among other sites the prefrontal cortex. Several psychopathologies, such as depression and ADHD, have been shown to result in compromised small-world network properties. Therefore we set out to explore the relationship between EC and the small-world properties of PFC using NIRS. NIRS data were collected from 44 toddlers, ages 3-5, while watching naturalistic stimuli (movie clips). Derived complex network measures were then correlated to EC as derived from the Children's Behavior Questionnaire (CBQ). We found that reduced levels of EC were associated with compromised small-world properties of the prefrontal network. Our results suggest the longitudinal NIRS studies of complex network properties in young children hold promise in furthering our understanding of developmental psychopathology.
    NeuroImage 07/2013; 85. DOI:10.1016/j.neuroimage.2013.07.022 · 6.36 Impact Factor
Show more